1,901 research outputs found

    General treatment of isocurvature perturbations and non-Gaussianities

    Full text link
    We present a general formalism that provides a systematic computation of the linear and non-linear perturbations for an arbitrary number of cosmological fluids in the early Universe going through various transitions, in particular the decay of some species (such as a curvaton or a modulus). Using this formalism, we revisit the question of isocurvature non-Gaussianities in the mixed inflaton-curvaton scenario and show that one can obtain significant non-Gaussianities dominated by the isocurvature mode while satisfying the present constraints on the isocurvature contribution in the observed power spectrum. We also study two-curvaton scenarios, taking into account the production of dark matter, and investigate in which cases significant non-Gaussianities can be produced.Comment: Substantial improvements with respect to the first version. In particular, we added a discussion on the confrontation of the models with future observational data. This version is accepted for publication in JCA

    Massive scalar states localized on a de Sitter brane

    Get PDF
    We consider a brane scenario with a massive scalar field in the five-dimensional bulk. We study the scalar states that are localized on the brane, which is assumed to be de Sitter. These localized scalar modes are massive in general, their effective four-dimensional mass depending on the mass of the five-dimensional scalar field, on the Hubble parameter in the brane and on the coupling between the brane tension and the bulk scalar field. We then introduce a purely four-dimensional approach based on an effective potential for the projection of the scalar field in the brane, and discuss its regime of validity. Finally, we explore the quasi-localized scalar states, which have a non-zero width that quantifies their probability of tunneling from the brane into the bulk.Comment: 14 pages; 5 figure

    Scalar Kaluza-Klein modes in a multiply warped braneworld

    Full text link
    The Kaluza-Klein (KK) modes of a massive scalar field on a 3-brane embedded in six dimensional multiply warped spacetime are determined. Due to the presence of warping along both the extra dimensions the KK mass spectrum splits into two closely spaced branches which is a distinct feature of this model compared to the five dimensional Randall-Sundrum model. This new cluster of the KK mode spectrum is expected to have interesting phenomenological implications for the upcoming collider experiments. Such a scenario may also be extended for even larger number of orbifolded extra dimensions.Comment: 10 pages, Revte

    On the application of frequency selective common mode feedback for multifrequency EIT

    Get PDF
    Common mode voltages are frequently a problem in electrical impedance tomography (EIT) and other bioimpedance applications. To reduce their amplitude common mode feedback is employed. Formalised analyses of both current and voltage feedback is presented in this paper for current drives. Common mode effects due to imbalances caused by the current drives, the electrode connections to the body load and the introduction of the body impedance to ground are considered. Frequency selective narrowband common mode feedback previously proposed to provide feedback stability is examined. As a step towards multifrequency applications the use of narrowband feedback is experimentally demonstrated for two simultaneous current drives. Measured results using standard available components show a reduction of 62dB for current feedback and 31dB for voltage feedback. Frequencies ranged from 50 kHz to 1 MHz

    A general proof of the equivalence between the \delta N and covariant formalisms

    Full text link
    Recently, the equivalence between the \delta N and covariant formalisms has been shown (Suyama et al. 2012), but they essentially assumed Einstein gravity in their proof. They showed that the evolution equation of the curvature covector in the covariant formalism on uniform energy density slicings coincides with that of the curvature perturbation in the \delta N formalism assuming the coincidence of uniform energy and uniform expansion (Hubble) slicings, which is the case on superhorizon scales in Einstein gravity. In this short note, we explicitly show the equivalence between the \delta N and covariant formalisms without specifying the slicing condition and the associated slicing coincidence, in other words, regardless of the gravity theory.Comment: 7 pages,a reference added, to be published in EP

    Design of a CMOS active electrode IC for wearable electrical impedance tomography systems

    Get PDF
    This paper describes the design of an active electrode integrated circuit (IC) for a wearable electrical impedance tomography (EIT) system required for real time monitoring of neonatal lung function. The IC comprises a wideband high power current driver (up to 6 mAp-p output current), a low noise voltage amplifier and two shape sensor buffers. The IC has been designed in a 0.35-μm CMOS technology. It operates from ±9 V power supplies and occupies a total die area of 5 mm2. Post-layout simulations are presented

    Exactly solvable model for cosmological perturbations in dilatonic brane worlds

    Full text link
    We construct a model where cosmological perturbations are analytically solved based on dilatonic brane worlds. A bulk scalar field has an exponential potential in the bulk and an exponential coupling to the brane tension. The bulk scalar field yields a power-law inflation on the brane. The exact background metric can be found including the back-reaction of the scalar field. Then exact solutions for cosmological perturbations which properly satisfy the junction conditions on the brane are derived. These solutions provide us an interesting model to understand the connection between the behavior of cosmological perturbations on the brane and the geometry of the bulk. Using these solutions, the behavior of an anisotropic stress induced on the inflationary brane by bulk gravitational fields is investigated.Comment: 30 pages, typos corrected, reference adde

    Primordial gravitational waves in inflationary braneworld

    Get PDF
    We study primordial gravitational waves from inflation in Randall-Sundrum braneworld model. The effect of small change of the Hubble parameter during inflation is investigated using a toy model given by connecting two de Sitter branes. We analyze the power spectrum of final zero-mode gravitons, which is generated from the vacuum fluctuations of both initial Kaluza-Klein modes and zero-mode. The amplitude of fluctuations is confirmed to agree with the four-dimensional one at low energies, whereas it is enhanced due to the normalization factor of zero-mode at high energies. We show that the five-dimensional spectrum can be well approximated by applying a simple mapping to the four-dimensional fluctuation amplitude.Comment: 16 pages, 4 figures, typos correcte

    Bulk inflaton shadows of vacuum gravity

    Get PDF
    We introduce a (5+m)(5+m)-dimensional vacuum description of five-dimensional bulk inflaton models with exponential potentials that makes analysis of cosmological perturbations simple and transparent. We show that various solutions, including the power-law inflation model recently discovered by Koyama and Takahashi, are generated from known (5+m)(5+m)-dimensional vacuum solutions of pure gravity. We derive master equations for all types of perturbations, and each of them becomes a second order differential equation for one master variable supplemented by simple boundary conditions on the brane. One exception is the case for massive modes of scalar perturbations. In this case, there are two independent degrees of freedom, and in general it is difficult to disentangle them into two separate sectors.Comment: 22 pages, 4 figures, revtex; v2: references adde
    corecore