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Bulk inflaton shadows of vacuum gravity
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We introduce a (5 m)-dimensional vacuum description of five-dimensional bulk inflaton models with
exponential potentials that makes an analysis of cosmological perturbations simple and transparent. We show
that various solutions, including the power-law inflation model recently discovered by Koyama and Takahashi,
are generated from known {5m)-dimensional vacuum solutions of pure gravity. We derive master equations
for all types of perturbations, and each of them becomes a second order differential equation for one master
variable supplemented by simple boundary conditions on the brane. One exception is the case for massive
modes of scalar perturbations. In this case, there are two independent degrees of freedom, and in general it is
difficult to disentangle them into two separate sectors.
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[. INTRODUCTION In spite of the tremendous efforts by many authi@g—
34], it is still an unsolved problem to calculate the evolution
Recent progress in particle physics suggests that the Unif perturbations in braneworld models with infinite extra di-
verse might be a four-dimensional subspace, called mensions. This lack of knowledge constrains the predictabil-
“pbrane,” embedded in a higher dimensional “bulk” space- ity of this interesting class of models. There is an approxi-
time. In this braneworld picture, ordinary matter fields aremate way to estimate the density fluctuations evaluated on
Supposed to be confined to the brane, while gravity Caﬁhe brane, in which perturbations in the bulk are neglected
propagate in the bulk. Various kinds of braneworld modeld9]. However, once we take into account perturbations in the
have been proposed, and the cosmological consequences®flk, generally we cannot avoid solving partial differential
these models have been studigar a review see, e.g., Ref. equations in the bulk with discouragingly complicated
[1]). The idea of the braneworld brings new possibilities, inboundary conditions.
particular, to scenarios of the early universe. Only a few cases are known where perturbation equations
A simple model proposed by Randall and Sundfiy] ~ can be analytically solvef82—34. One of them is the spe-
is such that the unperturbed bulk is a five-dimensionaFial class of bulk inflaton models mentioned ab$26,26§.
anti—de Sitter spacetiméwarped bulk bounded by one In this paper we clarify the reason why the perturbation
brane or two. A homogeneous and isotropic cosmologicagquations are soluble in this special case. Based on this no-
solution based on this model has been expldreds]. A tion, we present a new systematic method to find a wider
slow-roll inflation driven by a scalar field confined to the class of background cosmological solutions and to analyze
brane was considered [A]. An empty bulk, however, seems perturbations from them.
less likely from the point of view of unified theories, which ~ This paper is organized as follows. In the next section, we
often require various fields in addition to gravity. Consider-€xplain our basic ideas of constructing background solutions
ing a bulk scalar field, Himemotet al. [10—17 have shown and of analyzing cosmological perturbations. In Sec. Il we
that, interestingly, a bulk scalar field can mimic the standarcfonsider a model with a single scalar field in the bulk, which
slow-roll inflation on the brane under a certain conditieee IS the main interest of this work, and derive an effective
also Ref[13]). theory on the brane. Then, in Sec. IV, we present some ex-
In the context of heterotic M theory also, cosmological2@mples of exact solutions for the background cosmology ob-
solutions have been studig¢t4—17. In the model discussed tained by making use of the ideas explained in Sec. II. Sec-
in Refs.[14,15, the scalar field has an exponential potentialtion V deals with cosmological perturbations. Section VI is
in the bulk and the tensions of the two branes are also expdlevoted to discussion.
nential functions of the scalar field. In this model power-law
expansion(but not inflation is realized on the brane. A Il. BASIC IDEAS
single-brane model with such exponential-type potentials is
also interesting, and it has been investigated for a static brane
case[18-2(0 and a dynamicalcosmological case[21-24.
Very recently, an inflationary solution was found in a similar
setup by Koyama and Takahaghi5,26], extending the re-

A. Solutions in the Randall-Sundrum vacuum braneworld

We begin with a model whose action is given by

sults of Refs[19-27. A striking feature of their model is S=5+S, (2.9
that cosmological perturbations can be solved analytically.
where
1
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is the action of D + 1)-dimensional Einstein gravity with a b run from 0 ton+1, and¢; is assumed to depend only on

negative cosmological constant, ;= —D(D—1)/2¢?, the (n+2)-dimensional coordinates’.
Then dimensional reduction to+2 dimensions yields
sb:—J d°Xy—go, (2.3 1
SgHZ):TJ d" 2= Ge® RIG]— X jiG™Pdaepi b
is the action of a vacuum brane with a tensipnandg is the 2Kn+2
determinant of the induced metric on the brane.
We assumeZ, symmetry across the brane, so that the +G2°9,Q0,Q—2Ap. 1+ >, Kiji(ji—1)e 2%/,
tension of the brane is determined by the junction condition
as 2.9
, kboo? 1 where
e — (2.9
4D-1)? ¢? .
Q=2 i, (210
whereHy is related to théd-dimensional cosmological con-
stant induced on the brane, by k2. =3, ,/T1V;, and K; represents the signature of the
1 curvature of the metriddo?: —1 (open, O (flat), or 1
Apy==(D-1)(D—2)HZ, (2.5)  (closed. Making a conformal transformation to the “Ein-
2 stein frame,”
and it represents the deviation of from the fine-tuned = _ .2Q/n
=e , 2.1
Randall-Sundrum value BX(—1)/¢ 3 ;. Gap Gan 219
One of the key ideas in the present paper is to make use e have
the following well-known fact. If a metrid st) is a solution
of the D-dimensional vacuum Einstein equations with a cos- > .
mological constant\,,, S =—— fd””xv G|RIGI- 2 jiG™dabioned,
Kn+2
dsfp 4 1)= €2 (dZ+dsfp)) (2.6) 1
_ ~>ab _ —2Q/n
9,Qd 2Ap . €
is a solution of the D + 1)-dimensional model defined by ng Q%R bt
Eq. (2.1), and the warp factoe®® is given by
‘H +2 Kiji(ji_l)e_&bi_len} (212
w@__ 0 2.7)
sinh(Hy2)

Notice that the kinetic term of each scalar field has an ap-
(For a Ricci-flat brane, we havg,=0. In this case the warp propriate signature singg>0. A parallel calculation gives
factor reduces t@®?=¢/z.) Namely, we can construct a

(D +1)-dimensional solution in the Randall-Sundrum brane- Sbn+2)__f d"t 1x\/— qoe~ ", (2.13
world from a vacuum solution of thB-dimensional Einstein

equations. A well-known example is the five-dimensional )

black string solution obtained from the four- dimensionalWherea=cllV;, so thatkj. ,0=«5,,0, andq is the de-

Schwarzschild solutiof35]. terminant of the induced metric on the branggp
=Gapl 2 2= 2-z,- The caret upon indices repre-
B. Bulk inflaton models from dimensional reduction sents restriction to the subspace parallel to the brane. Hence

We explain how to obtain ann@ 2)-dimensional brane- @ andb run from 0 ton. Herez, represents the location of
world model with bulk scalar fields fromn@2+=j,)-  the brane. In this manner, we can deriveH(2)-dimensional
[=(D+1)-]dimensional spacetime by dimensional reduc-braneworld models with bulk scalar fields which have
tion. We usen to represent the number of uncompactified €xponential-type potentials both in the bulk and on the brane
spatial dimensions on the brane, which is three in realisti¢Fig- 1.
models. Let us consider am{ 2+ X j;)-dimensional space-
time whose metric is given by ll. SINGLE SCALAR FIELD IN THE BULK

From now on, for simplicity, we focus on models with a
dS{p1)= Gasd X dXE = Gop(x)dxXPdX*+ X e24Mdo?, single bulk scalar field. Therdimensional space represented
(2.9 by e*?do” is compactified on either a toruKE0), a
sphere K=1), or a compact hyperboloik(= —1). Using
wheredo? is the line element of §;-dimensional constant a canonically normalized fielgh:=«, 1, m(m+n)/né, the
curvature space with the volumé. Here the indiceg and  (n+2)-dimensional reduced action is written as
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Bulk inflaton model
5 R
Vp) ox ¢~2V2ee

(o

AZ
A ] -/
s

"zero mode"
truncation

Then, comparing the coefficient in front di?,
d(t,2):==a(t)+ w(z)

follows. Also, the i+ 2)-dimensional metricf}a,J is written
as

(3.6

Vacuum

oD
ﬂ+l=jl+2—|—m

Gapdx2dxP=e2m9/ng . dxed X

— e2(m+“)“””(q;\5dxg‘dxﬁ+ e2ma/nd 22)’

(3.7)

where we have sat®(®)=1. Substituting the above expres-
sion into Eq.(3.1), we perform the integration ovex to
obtain

2D 1

gn+1)—

n+1

f dn+1x \/__q{ ema/nR[q]

m(m-+n)
—e
n

D=n+1+m 22, ,
FIG. 1. Schematic of the higher dimensional vacuum description

of an (n+2)-dimensional bulk inflaton model and the derivation of

the (n+1)-dimensional effective theory on the brane. The top left

picture represents the bulk inflaton model that we are interested in.

To analyze cosmological background solutigasd “zero mode”

perturbations we use theif+ 1)-dimensional description shown in

the bottom left corner. On the other hand, we make use ofEhe ( where

+1)-dimensional description presented in the top right corner to

ma/nqab&éao—,ﬁa_ 2Abefma/n

+Km(m—1)e—2“‘m“’”], (3.9

simplify the perturbation analysis.

S(n+2): J dn+2X,/_'é

1 - 1.
Xl ,RLIGI- G920 dhe— V(@)
K 2
n+2

- [[ar=auce) @
where the potentials are
(m+n)(m+n+1) —
V(qD) - _ e—2\r‘2bKn+2<p
2"ﬁ+2€2
Km(m—-1) ~
_ e*V‘ZKnJrz‘p/nb’ (32)
2K§+2
U(p)=ce 2xn:2e, (3.3
with
b \/—m 3.4
“ N2n(m+n) 34

If we assume that the metr'ds(zDH) is given in the form
of Eg. (2.6), the action can be further reduced to the (

+1)-dimensional effective one on the brane. We write the

D-dimensional part of the metric in the form

A5y = gapdxPdxB=g{t" (x) dxidxP+ €2V d .
(3.5

Kn+1= KplV,

with
-1
2.2

Kp*=Kp41

mee(m+n)wdz

Zh

and V is the volume of them-dimensional compactified
space.

The above reduction tm+1 dimensions can be done
more easily starting with the O+1)-[=(n+2
+m)-]dimensional action. First we perform the integration
overz and obtain éD-dimensional effective action,

1
SP=—5 ] d/-g(Rlg]-2Ap, (39

Kp

where A, is, as before, the one defined by HB.5. The
effective action obtained is that f@-dimensional pure grav-
ity with a cosmological constank,. Compactifyingm di-
mensions further, and taking into account

on_ a2malny(n+1)
dab=€""""035

(3.10

the same expression for the<{ 1)-dimensional effective ac-
tion (3.8) can be recovered in a parallel way as we did for the
reduction fromD + 1 dimensions to+2 dimensions. Using

eep=e™" and wgp:=n(m-+n)/m, we can rewrite the
action in a familiar form:

1 0
j dn+lX\/__Q[ ¢gpR— qDf:l[))(o"(PBD)Z

S(n+ 1)—

2
2Kn-%—l

—2Apega+Km(m—1) (pB,gm*z“)’m] , (311
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which implies that the effective theory on the brane is de- e?*R '=6"[K(m—1)+na'B +(m—1)a'?+a"]
scribed by a scalar-tensor theory. The acti®®), or equiva- oo

lently (3.11), describes not only the background unperturbed =0, 4.2
cosmology but also the zero mode perturbation, both of .

which are independent of the extra-dimensional coordinate e?*R,1=6[nB'?+(m—1)a’'B'+ B"]=0,

apart from the overall factaa®®. 4.3

The induced metric on the bramg, is the metric in the
Jordan frame. If we use the metric in the Einstein frame, where the prime denotes differentiation with respectjto
Eliminating «” and ¢’ from the above three equations, we
Qap=e*""""" Vg, (312  have

the effective action becomes n(m+n-—1)
IB//_— —ﬁ,4_K(m_l)2,8,2.

S(n+1)= j dn+1x /_’a

m

We can easily integrate this equation. For example, when

1 .. K=1 (compactified on thersphereS™), the solution of this
x{ ——RI[q]- Eqab@é?pag?p—Y/(Tp)}, equation becomes
Kn+1
*(m—1
(3.13 ng’ (m-1)q

~sin(m-1)7]"

whereg:=«, 1, \/m(m+n)/ne and the potential is
where

2/2n -\ Km(m-1)

K§+1V(¢)=Abexll< - ﬁbKnHQD I T— mn
= Nmen—1 “9

r{ 2\2n(m+n—1) -
Xexp —

m(n_l) bKn+1‘P

(3.19

and the integration constant was used to shift the origin of
Obviously, the system defined by the above action is equiva- N
lent to Einstein gravity with a scalar field. A discussion of

time. Thus we find
m—1 *q/n
tar( > 7]” .
this type of potential can be found in a recent paper by Neu-
pane[36]. Substituting this result into Eq4.3), we have

IV. EXAMPLES OF THE BACKGROUND SPACETIME , _ q
a'=cof(m—-1) ] F—————.
sin(m—1) 7]

m—1 ]9
cof ——7 .
The solution forK = —1 is easily obtained by replacing sin,

tan, and cot in the above expressions by sinh,tanh , and coth,

_ _ _ _ respectively. The solution fak=0 behaves likeefox 7=%"
We first consider the following Kasner-type solution as angng e(m-Hac 174,

In this section, we give some examples»@imensional
vacuum solutlons, which generateDfrl)-dmen_spnal This is integrated as
braneworld solutions by making use of the prescription de-
scribed in Sec. Il A. Here we discuss models with a single
scalar field and investigate their cosmological evolution in eM De=gin (m-1) 7]
detail. Generalization to the case of multiple scalar fields is
given in Appendix B.

A. Kasner-type solutions

example of the Ricci-flat cas&,=0: Let us further investigate the cosmology of the above ex-
AyoB_ 2a(n) 5 , ample. Setting n=3 and K=1, the induced four-
gagdx"dx>=e 7 —dn+y,,dy*dy”] dimensional metric becomes

+92B(7])5ijdxidxj, ~ A o
QapdxPdX°= e2M — e2*d 5?2+ €25 dX'dX], (4.5
wherey,,, is the metric ofm-dimensional constant curvature

space, and andj run from 1 ton. Under the assumption of where

the above metric form, we solve the vacuum Einstein equa-

tions e*={siM(m—1) 7]}¥ ™ Dicof (m—1) /2]}¥ (M~ 1),

eZaRnn: n[lg/z_ a',B’ +B//]+ ma” =0, (4_1) e5={tar[(m— 1) 7]/2]}q/3. (46)
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andq=3m/(m+2).! We setq to be positive without any
loss of generality since the signaturecp flipped by a shift

of the origin of time,»— 7+ . Here one remark is in order.

In the original O + 1)-dimensional modein represents the
number of compactified dimensions and therefore is sup-
posed to be an integer. Howevet,is just a number param-
eterizing the form of the scalar field potential when we start
with the action(3.1) obtained after dimensional reduction.  FIG. 2. The motion of the scalar field in the potential. The
We therefore find thain can be any real positive number in behavior of the scale factor in the Jordan frame is also presented.
this context. The positivity needs to be assumed to keep th&he potential is positive for €q<1 (left figure), whereas it is
appropriate signature of the kinetic term for the scalar fielchegative for & q< 3 (right figure.

¢, or equivalently to keep the relation betwegrand ¢ real.

(Strictly speaking, the case with<—n=—3 is also al- where the exponenp_ is defined below in Eq(4.8). For
lowed) Thenq can be regarded as a continuous parametef:= »— z/(m—1)—0, the cosmological time iglocally)

with its range 6<q< \/§ _ _ expressed asx 7~ 94~9/9@-1) Therefore the range of the
The cosmological time- is related toz via proper timer is infinite for the parameter region<0q<1,
dr=eM3aly 4.7) while it is finite for 1<q< V3. In this limit n—0, the scale

factor, the Hubble parameter, and the scalar field behave like

Recall thatqzp, the metric induced on the brane in the five-
[=(n+2)-]dimensional model3.1), is related tagap by EQ. am;—q(q—3)/9(q—1)oc[
(3.10. Hence the scale factor associated with the megxic

is given bya=e™3*# and therefore the Hubble parameter _

on the braneH:=a 'da/dr is given by H=(ma'/3 Hoc 5p3(a=9)9@= Do g~ (a=9)/(a=3),
+pB')e” M3« gypstituting the above solutio.6) into
these expressions, we obtain

P+ (0<g<l),
(Tend— 7)p+ (I<g< \/§),

+o  (0<q<l),
0 (1<qg<+3).

In the above expressions, we have used

eto 7 (3-aDB(L-0)_,

a={sin (m~—1) 5]}247%" D

X {tarf (m— 1) p/2]}9(@*~3)/e@*~1),
m+3

P+:= .
Am+9=\3m(m+2)

. —802/9(02—1 The ranges op, andp_ are 1/(4+3)<p.<1/3 and 1/3
X{si(m—1) 7]} aR@y <p_<1/(4— \/§)
X{tar[(m_1)7]/2]}—q(q2—9)/9(q2—1)_ The behavior of this solution is easily understood from
the viewpoint of the four-dimensional effective theory de-
The relation between the coordinate timeand the cos-  Scribed by the actiori3.13, as was discussed in Re#0].
mological timer (4.7) is not so obvious, but the asymptotic 1he potential3.14 with A,=0 andK=1 is shown in Fig.
behavior can be easily studied. Whep—0, we haver 2. For 0<g<1 (0<m<1) the potential is positive, while

_ q(9*~3+2qcod(m—1)7]) 4.8

3(q*-3)

o pA@+9)%@+1)_, 0 and for g>1 (m>1) the potential is negative. In the former
case, the scalar field starts ate =, climbs up the slope of
acc p9(a+3)0@+ 1o 7P the potential, turns around somewhere, and finally goes back
to a==. In the latter caseq starts to roll down froma
Hoc g~ a(@+9)/9@+ 1)oc g = (a+9)/(@+3), =o. The universe expands for a period of time and eventu-

ally it starts to contract. Finally falls into the bottomless pit
within a finite time, where the universe ends up with a sin-
gularity.
Here we note that the above picture based on the four-
dimensional effective theory describes the dynamics in the
; . . X : ) conformally transformed frame in which the metric is given
be obtained if we compactify then-dimensional section

e 5,dxdx and regard then-dimensional sectioe*y,, ,dy*dy” b_y dab s wher_eas we suppose that the "phyS|caI’_’ m_etrlc is
as our three-space instead. The flat cdée 0) corresponds to the 9iven by the induced metric on the bragg;. In principle,
solution in Ref[21]. We should also mention that recently there hasthe cosmic expansion law can look very different depending
been a lot of discussion about the solutions witk=—1 in an 0N the frame we choose. The dynamics in the “physical”
attempt to explain accelerated expansion of the universe in the cotame therefore can be apparently very different. However,
text of M or string theonf36—-43. Note, however, that these argu- the above discussion is still useful since the conformal res-
ments are not in the braneworld context. caling does not change the causal structure of the spacetime.

oo n,(a,qzm(qﬂ)_) too,

We should remark that the dynamical solutions in R22] can
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ax 7,(m+3)/m

a oc m+3)/m

@ o FmH3)/m

T — [0 = o

FIG. 3. Sketch of the behavior of the scale factofdashed FIG. 4. The motion of the scalar field in the potential and the
lines) and the Hubble parameter (solid lines in the Jordan frame  behavior of the scale factor in the Jordan frame. The solution found
as functions of the proper time on the branéThe left figure shows by Koyama and Takahash25,2€ is described in the left figure.

the solution of Eq(4.6) with q>1. The right figure describes the ©One of the nontrivial solutions with its behavior at the starting point
solution of Eq(413 with the plus Sign in the exponent. ax Tp+ is also shown in the left ﬁgure, while the other one with the

exponentp_ behaves as shown in the right figure.
B. Kasner-type solutions with a cosmological constant
e will find that our model is equivalent to theirs. The pa-
rameterm is supposed to take any positive number. Thus it
follows thatA varies in the same region8/3<A< -2 con-
sidered in[25,26]. The background metric obtained by sub-
gAgdxAdxéz —dt?+ eZa(t)aﬂydyudyv_FeZﬁ(t) 5ijdxidxj, s;ituting thg simplest solutior= B=Ht is indeed the case
(4.9 discussed in thellr paper. . ' .
Next we consider the cosmic expansion law. We start with
wherei andj again run from 1 ta, but here the metric of the simplest caser=B8=Hgt. The dimensionally reduced
m-dimensional space is chosen to be fl&t=0) because metric (on the brangis
otherwise the solution with\,# 0 is not obtained analyti-
cally. TheD- [=(n+1+m)-]dimensional vacuum Einstein qéBdXédxﬁzeZmHOIIS(_dt2+eZH0t5ijdXide)_
equations with a cosmological constant reduce to

The next example is a generalization of the Kasner-typ
spacetime including a cosmological constant. Let us as-
sume that the metric is in the form of

4.10 Introducing the cosmological time and the conformal time

m(a+ a?)+n( 3+ %)= (m+n)HZ, 7 defined by

. - )
a+a(Ma+nB)=(m+n)Hg, (4.1) dr=adp=emHot,

B+ B(ma+nB)=(m+n)H32. : o

B+ p(matnp)=(m+nHp (412 ihe scale factor on the brare= MMt is written in

From this we obtain two types of solutiofsee Appendix B terms ofr or 7 as

One is a trivial solution, namelyD-dimensional de Sitter

spacetime, aoc 7(M*3)Mog 4y~ (M*3)/3 (4.19
a=pB=Hqt. Since I=(m+ 3)/m<, power-law inflation with any expo-

nent can be realized.

Of the other type are the following two solutions: Furthermore, we have nontrivial solutio®13). The be-

eM*"B=sinH (m+n)Ht], havior of the solutions is as follows. At early times~0),
the scale factor behaves like=e™3*#~t2 and the cos-
m-+n *1/ mological time is given byl 7~ t[m= 3MMT2)3(m+3)q¢ (and
e F= tanr( Hot” ’ so 7—0 ast—0). Therefore, we have

(4.13
whereq is the one that has been introduced in Eg4). The

range of the time coordinateis (—c,) for the former de i b introduced previously, which implies that the uni-
Sitter solution and 0,.) for the latter nontrivial solutions. verse is not accelerated at early times. At late times (

Applying the method discussed in Sec. Il A to _these solu-ﬂw), we see thatr—H,t and B—H,t, and the solution
tions, one can construct background solutions for

. ) ) %hows power-law expansion as is given in E415.
(D+_1)-d|men_5|onal bra_neworld mo_déﬁg. 3. _ A rather intuitive interpretation of the behavior of these
First we briefly mention the relation to the bulk inflaton

_ three solutions can be made from the four-dimensional point
mode_l r.ecently proposed by Koyama and Takahf5i26. of view again. The situation is summarized in Fig. 4. This
Identifying their model parameters and 6 as time the potential is always positive. For one of the non-

trivial solutions with the exponenp, in (4.16), the scalar

22 + ’
2(m—+4) — m+4 "Ho field starts to roll down frome= —o. For the other non-
m+3 4(m+3) 1+ ¢2H3 trivial solution with the exponenp_, the field starts to
(4.14 climb up the slope of the potential from= +, turns

a~1P=, (4.16

A=4pb*-8/3=—

064037-6
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around somewhere, and rolls down backate +®. Sup-  (Gg+ 3Gg)dXAdXB
pose that the field is increasing. Let us trace the evolution

of « backward in time. If the kinetic energy is larger than a ~ =€°“{(1+2N)dZ’+2Adtdz— (1+2d)dt?

certain critical valueg will not have a turning point in the +e2%(1+2S dvEdv + €281 (1+2W) 5. dxidx
past. In this case continues to decrease, reachinge. This ( _ _) Vi _ y [(_ 9
corresponds to the case with the exporgnt If the kinetic +2E;jdx'dx' +2B;dx'dt+2C;dx'dz]}. (5.5

energy is lowera will have a turning point. Then, we will

havea— +o att— —o. This corresponds to the case with These perturbations are assumed to be homogeneous and iso-
the exponenp_ . The case of power-law inflatio@.15 is,  tropic in the directions of then-dimensional compactified

in fact, the marginal case between these two. In this case, sPace spanned by the coordinaygs From the assumption
does not turn around. Therefore the evolutiorua similar ~ Of isotropy, mixed components such &G ,dy“dt and

to the case withp, . In any case, information about the 9G,idy“dx are set to zero. Concerning the metric perturba-
initial velocity is lost as the universe expands. Therefore thdions of the compactified space, therefore, only the overall

late time behavior of the solutions is unique and is given byvolume perturbatiorSS is considered. After reduction to
Eq. (4.15. +2 dimensions,S is to be interpreted as the scalar field

perturbation. Here, we also assume that the dependence on
the n-dimensional coordinate€ is given bye'ki*.
Metric perturbations are decomposed into scalar, vector,
We consider cosmological perturbations in theand tensor components based on the behavior under the
(n+2)-dimensional bulk inflaton models defined by Egs.transformation of the-dimensional spatial coordinat&sin
(2.12 and (2.13. The analysis of perturbations is compli- the following manner:
cated if we work in the originalr{+ 2)-dimensional models
with a bulk scalar field. Our r(+2)-dimensional system, B:EBSJF BY kBY=0
however, is equivalent to the DH1)-[=(n+2 bk b ! '
+m)-]dimensional one defined by Eq®.2) and(2.3). We

V. COSMOLOGICAL PERTURBATIONS

will show that the perturbation analysis becomes very simple kik; & g, 1 v 1

and transparent in thé)(+ 1)-dimensional picture, in which Eij=| — ? E>+ mk(iEj)+ EEij '

we just need to consider pure gravity without any matter

flelds. KEY=KE]=0, &E]=0, (5.6

We begin with the following form of background metric:

AsB _ o20(2) 2., 2at) , The quantities with a superscriitV, andT represent scalar,
GapdXAdXP=e?*(dZ* - dt*+e**(Vy, dy*dy vector, and tensor perturbations, respectively. The perturba-
+e2B0 5. dxidx)) (5.1) tions G, obey the linearized Einstein equations supple-
Y ' mented by boundary conditions at the position of the brane,

. - . 8K 2|,_, =0 whereK,g is the extrinsic curvature of the
where latin and roman indices in the lower case, respectively, ~* 22, AB _ _ _
rane. From the [ + 1)-dimensional point of view matter

run m- and n-dimensional subspaces, and the warp factor i ) . .
given by e?@=¢H,/sinh(Hs2). We assume that(t) and  SOUrces are absent on thli®dimensional brane, and this

B(t) are chosen so thagss is a solution of the makes boundar'y conditions _cons.iderably simple. Each com-
(n+1+m)-dimensional vacuum Einstein equations with aPonent of the Emste'm equatllons is presented in Append!x A
cosmological constant, Here we would Ilk_e to discuss the number of physical
degrees of freedom in scalar, vector, and tensor perturba-
tions. The transverse traceless tenﬁﬂf has f+1)(n
—2)/2 independent components, each of which obeys a sec-
ond order differential equation. For vector perturbations
&+ a(ma+nB)+K(m—1)e 2=(m+n)H2, (5.3 there are three variabl®’, E, andC). The coordinate
transformation has one vector mode, and correspondingly
. . ) there is one vector constraint equation. Therefore we have
B+B(ma+tng)=(m+n)Hg. (5.4  only 1 (=3—1x2) vector remaining as a physical mode.
Since a transverse vector has—(1) independent compo-
The background solutions witly,,=4,, (K=0), Ho#0 nents, we find that there arex{(n—1) degrees of freedom
and with K==*1, Hy,=0 were discussed in the preceding in vector perturbations, corresponding to the “graviphoton.”
section. In the following discussions, we include more gen¥or scalar perturbations there are eight variables, and the
eral cases withK==1 and Hy#0. Although the back- coordinate transformation has three independent modes.
ground solution cannot be obtained in an explicit form for Since there are the same number of constraint equations, the
such nonflat compactifications with a cosmological constanthumber of physical modes is 2=8—3X2). One of them
we will find that general properties of perturbations can becorresponds to the bulk scalar field and the other corresponds
explored to a great extent. to the “graviscalar.” In total, there are#(n+2)(n—1)/2
We write the perturbed metric as =2+(n—1)+(n+1)(n—2)/2 physical degrees of freedom.

m(a+a?) +n(B+p%)=(m+n)H2, (5.2
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The first “1” on the left hand side corresponds to the bulk ebM(Z)=CT[Sinf(HoZ)]1/2+’“‘{Q1_/21/+2i_V“[COSf(HoZb)]
scalar and the othem(+2)(n—1)/2 degrees of freedom to "

those of fi+2)-dimensional gravitational waves. X P15, [ costiHoz) ]

_p-1l2-pn —12—pn

A. Tensor perturbations Puasi,/ 1€0sH0zo) 1Q 172 fiL costtHoz) I},
Since tensor perturbations are gauge invariant from the (5.19

beginning, they are in general easy to analyze. The equatioRgherecT is a normalization constant and
for tensor perturbations are read from {lig} component of

the Einstein equationG\5) as M2
T Vi= ——,U,2, (51@
ﬁEij =0, (5.7 H(Z)

where we have defined a differential operator These general properties of the mass spectrum and the mode
. . functions in thez direction hold irrespective of the specific
L=+ (Mma+np)d+e 2PkP— 52— (m+n)(d,w)d,. form of the background solutioa and 8.
(5.8 Let us move on to the time dependence of tensor pertur-

o o bations. Using the cosmological time on the brane defined by
The perturbed junction condition implies that boundary con-;= feme/ngt Eq.(5.10 is rewritten as

ditions are Neumann on the brane,

B 1=2,=0. (5.9

H+mda d +k2+ 72ma/nM2 0
: 7/dr g2 € X=5

Since the perturbation equations are manifestly separable, we (517
write Ef = x(t) #(2) Y{;(x") whereY/| is a transverse, trace-

where one must recall that=e™*""# andH=a 'da/dr.
less tensor harmonics. Tharft) and ¢(z) obey 7

For the zero modeN?=0), this reduces to the equation for

the tensor perturbations in the scalar-tensor theory defined by

the action(3.8). An apparent difference from Einstein gravity

) 5 is the presence of the ternm(n)(da/d7). The Kaluza-

¢+ (M+n)(d,0)d,¢p+M=0. Klein mass with respect to observers on the brane is ex-
(51D pressed as

x+(ma+npB)x+(e ?k2+M?)x=0, (5.10

HereM? is a separation constant and represents the squared M2, (1) = e~ 2ma(d/nyj2 (5.18
Kaluza-Klein(KK) mass for observers on tizdimensional KK '

brane. _ o o and somgc=e """y H, for the lightest one, whereas the
Now we discuss the mode function in tizedirection,  ,pple parameter at that time is given by

#(z). Using a canonical variablg:= e*“y, with

m+n 3 H=g ma/n ?d—l—,@ .
M= 2 = E’ (5.12
For a=pB=Hyt, this implies H=2n"te"™"y,H, and
Eq. (5.11) is rewritten into a Schidinger-type equation therefore the mass gap akbare of the same order. On the
R R R other hand, when the background is given by Eqgl3, we
— 2P+ V(2) p=M?y, (5.13  haveH=2n"te ™", H,cotH (m+n)H,t] and the mass gap
can be very small compared k) but only for a short period
where the potential is neart=0.
Despite its rather simple form, Eq5.10 cannot be
v 1 S P2 K2D+10'5 solved analytically in general. One exception is the case
(2)=p(p )sian(Hoz) mHg 5 0(2=2). = B=H,t discussed if25]. In this case, Eq(5.10 reads
(5.19

X+ (m+n)Hox+ (e 2Holk?+M?)y=0,
The delta-function term is introduced so thiaautomatically

; : e o Hot
satisfies the boundary conditia# (z,)=0. The presence of WNich, using the conformal timg=—e"""/H,, can be re-

the zero mode, for whicky is constant irg, is obvious from ~ Written as
Eqg. (5.1). From the asymptotic value of the potential
2142 : d> 1-m-n d M?2
V(*)=un"Hgy, we can say that there is a mass gélj el bk ¥=0. (5.19
= uHy between the zero mode and the KK continuum. d»n? 7 dy H37?
The z dependence of the massive modes is given in terms
of the associated Legendre functions by This indeed has analytic solutions,
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X0 (= m)*HB(— k), (5.20 H2
V(Z)=M(M_1)T+M2Hg. (5.3)
xu= (= )*HE (—kn). (5.21) sinff(Ho2)

This is not a surprise because the background of the currerthe crucial difference from tensor perturbations is the ab-
model is just an AdS. ,. , bulk with a de Sitter brane. sence of the delta-function potential well. Because of this,

there is no zero mode and only the massive modes with
M2>V(oo)=,u2Hg exist. Thez dependence of the mode

] ] functions is given by
Next we consider vector perturbations. From the per-

turbed junction condition§Kij|Z:Zb=0 and 5K ') -5, =0, Qu(2)=cV[sinh(Ho2) Y2 #{Q Y2t [ costiHozy) ]
we have

B. Vector perturbations

X P}t cosiHe2)]

— P12t [cosiHoz,) Q-1 “[costiH2) T},

Under a vector gauge transformatiah—x'=x'+ &V, the (5.32
metric variables transform as

9,E12=2,=0, CY|,=4,=0, ,B!,-,,=0. (5.22

_ wherecV is a normalization constant. When= 8=Ht, we
E'=E'+k¢', BY=BY-¢&', C/=CV-49,¢’. can find an analytic solution for the time dependence of the
(5.23 mode functions, which, using the conformal time, is given by

Thus we are allowed to s&’'=0 by choosing an appropri- xm( 7)o (— 7)) *FHO(— k7).
ate gauge. We expand the remaining variables by using the .

transverse vector harmonid§’ as )
C. Scalar perturbations

V_ vV V_ Vv
Bi=BY;, Ci=CYy. (5.24 1. Gauge choice, the boundary condition, and the mode

. . decomposition
For convenience, we introduce

Since scalar perturbations are more complicated, we begin
O =k~ 2eMat(n*2)Bgmeney B (). (5.25  With fixing the gauge appropriately in order to simplify the
perturbed Einstein equations. We impose the Gaussian-

Then Egs(A8) and(All) are written as normal gauge conditions
B=e Ma Mg (miney (), (5.26 N=A=C=0. (5.33
C=e Ma—nBg=(Mina() (5.27 Different from the case of vector perturbations, these condi-

. o . o tions do not fix the gauge completely. In the case of scalar
Itis easy to see that the remaining third equation is automatiperturbations we need to take care of perturbations of the
CaIIy satisfied if the above two equations hold. SUbStitUting)rane location. Here we make use of the remaining gauge
these two into Eq(5.25, we obtain a master equation degrees of freedom to keep the brane location unperturbed at

. ) o Copo ) z=17,. In the Gaussian-normal gauge, boundary conditions
[Q—(ma+nB)Q+e PO ]~ [d;Q—(m+n)(d,w)3,Q]  on the brane for all remaining variables become Neumann:

=0. 5.2
(528 aZ’\P|Z:Zb:ﬁZE|Z:Zb:ﬁZS|Z:Zb:&Z®|Z:Zb:&ZB|Z:Zb:0'
This equation looks similar to the equation for tensor pertur- (5.39
bations (5.7). The difference is that the signatures of the
terms containing first derivatives such @sand()’ are re-
versed. From Eqg5.22, the boundary condition fof) on
the brane turns out to be Dirichlet,

Three of eight scalar perturbation equations are the con-
straint equations, and the other five are the evolution equa-
tions. First, let us examine the constraint equatioig),
(A13), and (Al4). Equation(A13) reduces to&§(<1>+n\lf

Q|z=zb:0_ (5.29 +m9 +d,wd,(P+n¥+mY=0. Taking into account the
boundary conditions, this equation is once integrated to give

Since the master equatidh.28 is separable, we write
Q(t,2)=x(1)Q(2). The canonical variablé)(z) =e~»“Q) I P+n¥+mS=0. (5.39
again obeys a Schdinger-type equation .

Equations(A7) and (A14) reduce to
- 20+ V(2)Q=M2Q), (5.30 _ o _ _
dJKkB+2®+2(ma+nB)d—2maS—2nBY¥Y]=0,
with the potential (5.36
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. S (Mot nB)B—4BB— 4328 — 2
5.0 B (et g+ 23)B + 26~ 28K LB=—(ma+nB)B—4B8B—432B—2(m+n)H2B

\IH—(%—l)E“ =0.
(5.37) —4e 2PKpBD, (5.46

With the aid of Eq.(5.35, we find that all the perturbation where£ is defined in Eq(5.8). Two of them give indepen-
equations are separable. Furthermore, zldependent parts dent master equations for the massive modes, and the re-
of these equations are the same as those of tensor perturbaaining three equations do not give any new conditions.
tions with the same type of boundary conditions. ThereforéWith the aid of the constraint equatiofs.39—(5.41), Egs.

we can expand all variables by using the same mode fund5.42 and(5.45 can be rewritten as

tions in thez direction as those for tensor perturbations:

LY=-2(n-2)B(a—B)¥+ %Bc’b
E=Eo(1)¢o(2)+ 2 En(t)ym(2),

n—2. . . 5
-2 T,B[(er Da+nB]l—(m+n)Hg @,

D=Dy(t)ho(2)+ > Pu(Dgp(z), ---, (5.39
(5.4

where i, is constant,y, is given by Eq.(5.15, and M?
;MZHS. Consequently, Eq95.39, (5.36, and (5.37) are
automatically satisfied for the zero mode. For the massive —(m+nH3d—2n[a—B+2B(a—B) V.

modes these constraint equations give (5.48

Unfortunately, except for the simplest case be discussed
laten we do not know how to disentangle these two equa-
tions, although there is no problem in solving these equations
1 numerically. Once we solve these coupled equations, the
Z_ 1) E} =0, (5.41) Othervariables,B,E are easily determined just by using the

n constraint equations.

LD=—4BD—2{(m+1)a+nB+2B[(Mm+1)a+npa]

O +n¥+mS=0, (5.39

kB+2d +2(ma+nB)d —2maS—2nB¥ =0, (5.40

B+ (ma+nB+2B)B+2e 2k ¥+

where the subscrigil was abbreviated. Note that these three 3. Zero mode
equations are nothing but the components of the divergence

of the metric perturbations To discuss the zero mode, it is useful to look at the cos-

mological perturbations in the corresponding
VASG, 0= VA5G p= VA5G, =0. (n+1)-dimensional theory defined by the acti@13. In
the case of ther(+ 1)-dimensional Friedmann universe with
In other words, the transverse traceless conditions are auté- single scalar field, there is only one physical degree of
matically satisfied if one imposes the Gaussian-normal gauglseedom in scalar perturbations. One can derive a second
conditions except for the contribution coming from the zeroorder differential equation for one master variajsd]. Back
mode. VA5G, gives the traceless conditionBelow we in the braneworld context, the background metric and its

discuss the KK modes and the zero mode separately. zero-mode perturbations are also described by the same ef-
fective action (3.13. Therefore, the analysis of the zero
2. KK modes mode is no different from the conventional

By using the constraint equatios.39—(5.41), the Ein- (n+1)-dimensional cosmological perturbation theory. Be-

. 4 . low we will explain this fact more explicitly.
Efﬁ;gdegougwenmz)’ (A3), (A10), (A12), and(A15) are sim To begin with, we consider n+ 1+ m)-dimensional

spacetime whose metric is given by

2 . .
L\If:—(ﬁ—l)k,88+2,8d>+2(m+n)H(2)(I), (5.42  ds°=—(1+2d)dt*+e’*(1+2S)y,,dy*dy”
+e?P[(1+2W)5,;dXdx +2E;;dx'dX + 2B;dxX'dt],

LE=2kpBB, (5.43 (5.49
LS=kaB+2ad+2e 2*K(m—1)(S—P) where only scalar perturbations are imposed and they are
again assumed to be homogeneous and isotropic with respect
+2(m+n)H5P, (5.449  to the mdimensional compactified space spanned iy
Then, the perturbed Einstein equationgRaz=(m
LD=—2(ma+nB)D+2kBB+2maS+2nB¥ +n)H58948 become identical to EqgA2), (A3), (A10),
5 (A12), and(A15) with N, A, C, and the terms differentiated
+2(m+n)H®, (5.49 by zdropped. Hence, it is manifest that the analysis of zero-
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mode perturbations in ourn¢-2+m)-dimensional space- \where £yf:=f+(ma+npg)f+e 2k?f. Combining all
time is equivalent to that of the above system. these. we obtain the EOM fob -
As for perturbations in rf+2+m)-dimensional space- ' '
time, we have already fixed the gauge by imposing three o\, 5
gauge condition$5.33. However, these gauge conditions do LoV — 2( B+ _—> V+2(n— 2)( B— ,8—) Vv=0.
not fix the gauge completely. As is manifest from E@sl7), a a
gauge transformations satisfyigg=0 and &> =¢"=0 do (5.59
not disturb the condition5.33. On the other hand, on the

imensional si i imey= e~ # ite thi
(n+1)-dimensional side there are two scalar gauge transfor2Sing the conformal timey=fe~"dt, we can rewrite this
mations into a more familiar form as

- t R a”
t%t—t+§, \I’”"‘ (n_l)H_z_l
o

!

\if’+k2‘if+2(n—2)(H’—Ha—)\if
i i _ i i S/
X'—=x'=x'"+k'&ik. o (5.56

The transformation of metric variables under these gauge i
transformations is the same as that obtained by setiing Where we have defined
=0 and&S = ¢V =0 in the last five equations ifA17). 1

If we think of the size of the compactified dimensiSms H:=(Ina)'= ——=[ma+(n-1)8]', (557
a scalar field in 0+ 1)-dimensional spacetime, the system n—1
reduces to a conventionah { 1)-dimensional model with a -
scalar field. In the conventional cosmological perturbatior@nda=e™(""Y*# is the scale factor in the Einstein frame.
theory,® and ¥ in the longitudinal gaugeR=E=0) are Since there is a mass gap between the zero mode and the
known to be convenient variables. Here one remark is thaf@ssive modes in general in our models except for a short
we need to take account of a conformal transformation tdPeriod in the cases ¢+ 0, the massive modes would not be

map the theory to the conventionai 1)-dimensional one, €xcited easily. Hence, the behavior of the zero mode is espe-
cially important. Since we found that the zero mode can be

d2=el2mn(n=1](a+9), g(2m/n)(a+8)q g2 described by the corresponding+ 1)-dimensional conven-
tional cosmology, it can be easily analyzed in general.
= el2m/(n-1D)](a+9)g g2 (5.50
4. Exactly solvable case
which follows from the discussion in Sec. Ill. Then the vari-

ables corresponding to the so-called Sasaki-Mukhanov vari- Let us consider the _S|mple§t background glvenabw%_
ables are =H,t with K=0. In this special case, scalar perturbations

including the KK modes are solved exactly. The most re-
m markable advantage of our approach may be thatztte-
O:=Pp+ ——5, (5.5 pendence of the modes can be derived for a general back-
ground as we did in the earlier part of this section. The
time-dependent part, which is usually nontrivial especially
V:=P+ ——S (5.5  for the KK modes, is also solved easily as shown below
n—1 whena= B=Hjt.
Substitutinga= B=H,t into Eg.(5.48, the equation for

in the longitudinal gauge. ® is decoupled first,

EliminatingN, A, B, C, E, and the terms differentiated by
z Eq. (A3) becomes LO=—4Hod—2(m+n+2)H2D. (558
¢+(n-2)¥=0. (5.53 By assuming the dependence given in E@5.15, we ex-
pand as®=® ¢y . Then, using the conformal time, the

Similarly, from Egs.(A10), (A2), and(A15), we have above equation is rewitten as

(n—1)W+(n—2)[ma+(n—1)8]¥ 2 min+t3 d M2
— - ——— —+k+ | S +2(m+n+2) | [Py
m+n-—1 2 d 2\ H2
T T has, dy n n 7\ Hg
n—1
=0. (5.59
Lo¥=—2(n—1)BV¥+2(m+n)H3P, The solution is given in terms of the Hunkel function by
LoS=—2(n—1)aW +2(m+n)H2d @y =c3(—7)?p(n) (5.60
—2K(m—1)e ?4(d-S9), (5.54  with
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p=(— ﬂ)”Hi(i)(—kﬂ), mological perturbations in such braneworld models. Lifting
the models to 3-m(=n+2+m) dimensions is a powerful
wherec$ is a constant ange and v were defined in Egs. technique for this purpose. The degrees of freedom of a bulk
(5.12 and(5.16). Then, substituting this into E5.41) with scalar field inn+2 dimensions are deduced from a purely

the aid of Eq.(5.40, By, is immediately obtained as gravitational theory in thern(+ 2+ m)-dimensional Randall-
Sundrum braneworld, which consists of a vacuum brane and
By=—2cTk *Ho[(— 7)%p’ + (2u—1)(— 5)%p]. an empty bulk. We would like to emphasize that the analysis

(5.62) is greatly simplified thanks to the absence of matter fields.
_ _ _ _ _ From the fi+2+m)-dimensional perspective, we have de-
The result is consistent with the evolution equation Br rived master equations for all types of perturbations. We

[Eq. (5.46)]. have shown that mode decomposition is possible for all mod-
Equations(5.43), (5.44), and(5.46) are combined to give els which are constructed by using this dimensional reduc-
a simple equation tion technique. Moreover, the dependence in the direction of
the extra dimension perpendicular to the brane can always be
L[Vy+Ey/n—Sy]=0. solved analytically.

_ _ As for scalar perturbations, there are two physical degrees
The operator. is the one that appeared in tensor perturbaf freedom for the massive modes and the equations are not

tions, and so the mode solutions are already known: decoupled in general. For the zero mode, however, the situ-
s ation is equivalent to the standard four-dimensional inflation
W+ Ew/n—Sy=czp, (5.62 driven by a single scalar field. Hence, only one degree of

. . freedom is physical. Therefore we end up with a single mas-
wherec§ is another constant. Substitutidgy andBy,, the ., equation. To sum up, our “embedding and reduction”

constraints(5.39 and (5.41) reduce to two algebraic equa- approach enables a systematic study of cosmological pertur-

tions forWy,, Ey, andSy as bations in a class of braneworld models with bulk scalar
fields.
_ _AS 2 . . .

NWy+mSy=—ci(— 7, (5.63 In this paper, we have not discussed quantum mechanical

s ) S aspects. In order to evaluate the amplitude of the quantum

Yy+(Uh-1)Ey=—ci(—n)p—ck fluctuations, the overall normalization factor of the perturba-
_ , 2 o 2 tions must be determined. For this purpose, one needs to
X[(2pu=1)np"+(v*=3u"+2u)p]. write down the perturbed action up to the second order writ-

(5.64  ten solely in terms of physical degrees of freedom as is done
) ) in the standard cosmological perturbation theory. We would
Solving Egs(5.62), (5.63, and(5.64), we obtain the expres- |ike to return to this problem in a future publication.
sions for¥y,, Ey, andSy . Thus, all the metric variables  In this paper our investigation is restricted to the param-
can be analytically solved. Note that one of the above twaeter regionm>0, wherem is the number of compactified
independent solutions was already obtained in Réfs,26.  dimensions. Iim>0, a singularity could exist &=, but it
The zero-mode solution is also easily obtained. In thisis null. Form<—3, we have the right sign for the kinetic
background, the master equation becomes term of the scalar field and so it is possible to consider such
models. In this parameter region, however, there is a timelike

- m+n—3 . - singularity atz=0 and therefore we need a regulator brane
"__ ’ 2\0r —
v 7 P +kTw =0, (5.69 to hide it. This case includes the cosmological solution of
heterotic M theonyf14] (which corresponds ton= —18/5),
and the solution is and the analysis of cosmological perturbations in such two-
. brane model$17] would also be meaningful. This issue is
W=cS(—n)* HE (k7). (5.66  also left for future work.
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First we have investigated the evolution of file= (n APPENDIX A: PERTURBED EINSTEIN EQUATIONS AND
+2)-]dimensional background cosmologies, giving an GAUGE TRANSFORMATIONS
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The perturbed quantities are decomposed into scalar, vector,
and tensor components whose basic definitions are given by
l+m+n Eqg. (5.6). Note that in the following expressions no gauge

=——————5Gpp. conditions have been imposed yet.
€2

1 1
SRag=VcV(a6Gg)“— 515Gas— 5 VaAV50G

{i,j} component
1. i 2\ F " rh! —2B 9k —2B 9k
E[hij+(ma+n,8)hij—hij—(m+n)w hij_e Jd &khij-i—Ze J a(,hj)k]
—[&(iBj)+(md+nﬂ)a(iBj)—&(iCj')—(m+n)w'(9(iCj)]—5ij(B&kBk—w’&ka)
+8;{2(m+nHHN-®)+2(1+m+n)o'N+ o'N' —[ma+(m+2n)Ble’A

—BA' — o' A= ' (@+mS+n¥)’ + B(N— P+ mS+n¥) }—e 25,9;(N+ P +mS+n¥)=0, (Al)

whereh;; =2V §;; + 2E;; and the dotprime) denotesy/ it (d/3z). (We use the prime to denote differentiation with respect to
z only in Appendix A)

Trace part

. S 2
Y+ (ma+nB)¥+e 2Pk*¥ —¥"— (m+ n)w’\lf’—e’zﬁkzﬁ

5-1/¢
W+ =—1|E
n

. . . 1
—k[B+(ma+2n,6’)B—C’—(m+2n)w’C]ﬁ

+{2(M+N)H3(N—®)+2(1+m+n)w’N+w'N’ —[ma+(m+2n)Ble’ A— BA’

. . . 1
—0'A— 0 (P+mStn¥) + B(N—P+mS+n¥) }+e’23k2(N+(I)+mS+n\P)ﬁ=0. (A2)

Trace-free part {z,i} component

E+(ma+nB)E+e 2Pk’E—E"—(m+n)w'E’ . . L _ _
(&]hij),_(diA) —(ma+ n,8—2,8)&iA+&'ﬁiCj—(9'&jCi

1 . L
+2e 2K ¥ + ~—1JE +K[B+(ma+npB)B] —20;(®"+mS +n¥')+2(m+n)w’dN
_k[C'+(m+n)w’c]_e*23k2(N+®+ms+n\lr) +e2'3[éi—Bi’+(md+nB+2[3)(Ci—Bi’)]=0.
-0. (A3) (AB)
Vector Scalar

E'+(ma+nB)EY—E/"—(m+n)w'E’

1 . . . .
+K[BY+(ma+nB)BY]—k[C '+ (m+n)w’CY]=0. k[z‘l"” ﬁ—l)E'—A—(m“”ﬁ—zﬁ)A
(Ad)
—2(®"+mS+n¥')+2(m+n)w’'N
Tensor
[97+(Mma+np)d+e 2Pk?— 35— (m+n)w’ 4,]E]=0. —e*[C-B'+(ma+np+2p)(C-B")]=0.
(AS5) (A7)
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Vector
KEY'+K?CY+e?/[C/—B)"+(ma+nB+2pB)

x(CY-BY")]=0. (A8)

{t,i} component
(@hij) +(GA) +(Mm+n)e’ A+ 9,Bj— 3 ;B
+2(ma+nB—B)dd—2d;(N+mS+n)
+29[ BN+m(B—a)S]

+e?’[—B"+C;'+(m+n)w'(C;—B;")]=0.
(A9)

Scalar

E+A’+(m+n)w'A+2(ma+ng—B)d

202
k2w +2(=—1
n
—2(N+mS+n¥)+28N+2m(B—a)S
—e?f[-B"+C’'+(m+n)w'(C—B’)]=0. (A10)

Vector

KEY+Kk?B;+e*[-BY"+CY’+(m+n)w’(C’-BY')]=0.
(A11)

{t,t} component
k(B+2BB—w'C)—(nT+m9 +w'(P+n¥T+m9’ +A’
+(1+m+n)w’ A+d"+(M+n)w’d' —e 2PK2D

+(ma+nB)d—2nBY¥ —2maS—N—w’'N’
—2(1+m+n)w’N=-2(m+n)H3(N-®)=0. (A12)

{z,z} component
N+e 2Ak?N+Kk(C'+w'C)—(P+n¥+mS)”
— @ (P+n¥+m9’ — (A +w'A)
—(ma+np)(A’+w'A—N)
+(1+m+n)(w'N'+20"N)=0. (A13)

{t,z} component
k(C+2BC+B’)+e 2AkPA+2(ma+nB)d’
+20' (M+N)N=2(nP’ +mS)—2nBY¥’ —2maS’
—2(m+n)HZA=0. (A14)
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{W,»} component
S+(2ma+nB)S—-S' —(2m+n)w’'S
+[e 2Pk2—2e"22K(m—1)]S+naV¥ — ad
— @' (P +n¥')+2e 2?°K(m—1)P +k(w'C— aB)
+aN+o'N' +2(1+m+n)w’N— o’ A—aA’
~[(2m+n)a+nBle’A+2(m+n)H3(N-d)=0.
(A15)
Gauge transformations of the metric variables
Under a scalar gauge transformation,
tot=t+&,
z—z7=27+¢,
K
X' —x'=x+ mgs, (A16)
the metric variables transform as
N=N=N-¢&"-0'&,
A—A=A+E - &,
C—C=C+e %kg—¢>
B—B=B-e 2Pk¢— ¢S,
P-P=0—§—0'&,
VW=V %k&s—w—ﬁf&
E—~E=E+k¢s,
S—S=S—w'&—at. (A17)

APPENDIX B: MULTIPLE SCALAR FIELD
GENERALIZATION

Let us give the generalization of the Kasner-type metric
discussed in Sec. IV. First we generalize the case withgut
but including the curvature for one of the spatial sections:

gundx"dx=e?* [ —dy?+y,,dy“dy’]

N
+ |:21 e 5() dxMdxN,

where 8{, is the metric of aj;-dimensional flat space and

Y., is the metric of am-dimensional maximally symmetric
space. As before we identifigd with n. If we compactify
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3

(E+ E{\izji) dimensions leaving (+1) dimensions, the L, _az . —

compactified space is divided intd sectors having different 2 jict= m_1’ 2 jic==q.

scale factors. Then the resulting cosmology after dimensional

reduction will possess/ scalar fields. The next is a generalization of the Kasner-type spacetime

The set of vacuum Einstein equations becomes including a cosmological constart,. Let us assume that

the metric is in the form of
GZ“RWWIZ jiv/2—a'u+u’+ma"=0, (B1) N
gundxMdxN=—dt?+ >, 2105 dxdx?.  (B7)
2R =5 [K(m—1)+a’u+(m—1)a’?+a"] =
=0, (B2) Here all the spatial sections are taken to be flat<0),

because otherwise an analytic solution with# 0 cannot be

« i Dot = C found. The Einstein equatior® =NH2gy N, With N
e** Ry oL =L v/ u+(m—1)a’ v +4/1=0, q unl Q] odun

(B3) :=D—1=3n; reduce to
where we have introduced S Qi+ '7-2)=NH§ (B8)
| 1
u=2 iy (B4) e
Yit v §ivi=NHS, (B9)

From Eq.(B3), we obtain
where the overdot denotes differentiation with respect. to
u24+(m-1)a’u+u’=0. (B5)  These equations admit a trivial solutionfdimensional de
Sitter spacetime,

Then it is easy to see that E®2) and(B4) are equivalent

to Egs.(4.2) and(4.3) in the example of Sec. IV A by iden- ¥i=Hot. (B10)
tifying u with nB’. Therefore the solution of Eq$B2) and ) o )
(B4) for K=1 is written as There is another type of nontrivial solution. From EB9)
we find thatu:=Xj;y; obeys
_ E(m=1)qg L s s
Y aimena ® =cof(m Mh_sir[(ﬁ—l)n]' u+u?=N2H3.
(B6)

The solution for this equation is

Since these two equatioiB2) and(B4) do not have depen-

— u=NHgcoth(NHgt).
dence on the number of dimensiogdhas not been fixed yet. oCOUNHot)

Substituting this solution into EqB3), we obtain Substituting this into Eq(B9), we obtain
(m—1)y{cof(m—1) 7]+ /=0, [sinh(NHgt) 7] =NH2sinh(NHt).
which is integrated to give This can be easily integrated and the integration constants
. are determined from EdB8). Then we have
., (m=1)c
0 . Hg[cosiNHgt) +¢i]
sif(m—1) 7] _o 0 [
Vi Sin(NHot) (B1D

wherec; is an integration constant. Substituting this into the
remaining equatiofB1) and the definition oti (B4), we find

. . .2 _
that the solution is given by 2 jiei=0, X jicf=N(N-1). (812

- o M1 \]%9 Finally, integrating Eq(B11), we obtain
el De=sin(m—1) 7] co ——7||
N ) NHp | ¢
eMi=sinh(NHt)| tan Tt (B13)
r( m-1 ||
e¥i=|ta 7l , . . .

2 Integration constants were removed by rescaling the spatial
coordinates. There are only these two types of solutions

with (B10) and (B13) for Eqgs.(B8) and(B9).
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