111 research outputs found

    Prediction of sunflower leaf area at vegetative stage by image analysis and application to the estimation of water stress response parameters in post-registration varieties

    Full text link
    The automatic measurement of developmental and physiological responses of sunflowers to water stress represents an applied challenge for a better knowledge of the varieties available to growers, but also a fundamental one for identifying the biological, genetic and molecular bases of plant response to their environment.On INRAE Toulouse's Heliaphen high-throughput phenotyping platform, we set up two experiments, each with 8 varieties (2*96 plants), and acquired images of plants subjected or not to water stress, using a light barrier on a daily basis. At the same time, we manually measured the leaf surfaces of these plants every other day for the duration of the stress, which lasted around ten days. The images were analyzed to extract morphological characteristics of the segmented plants and different models were evaluated to estimate total plant leaf areas using these data.A linear model with a posteriori smoothing was used to estimate total leaf area with a relative squared error of 11% and an efficiency of 93%. Leaf areas estimated conventionally or with the developed model were used to calculate the leaf expansion and transpiration responses (LER and TR) used in the SUNFLO crop model for 8 sunflower varieties studied. Correlation coefficients of 0.61 and 0.81 for LER and TR respectively validate the use of image-based leaf area estimation. However, the estimated values for LER are lower than for the manual method on Heliaphen, but closer overall to the manual method on greenhouse-grown plants, potentially suggesting an overestimation of stress sensitivity.It can be concluded that the LE and TR parameter estimates can be used for simulations. The low cost of this method (compared with manual measurements), the possibility of parallelizing and repeating measurements on the Heliaphen platform, and of benefiting from the Heliaphen platform's data management, are major improvements for valorizing the SUNFLO model and characterizing the drought sensitivity of cultivated varieties.Comment: in French languag

    Increased genetic diversity improves crop yield stability under climate variability: a computational study on sunflower

    Full text link
    A crop can be represented as a biotechnical system in which components are either chosen (cultivar, management) or given (soil, climate) and whose combination generates highly variable stress patterns and yield responses. Here, we used modeling and simulation to predict the crop phenotypic plasticity resulting from the interaction of plant traits (G), climatic variability (E) and management actions (M). We designed two in silico experiments that compared existing and virtual sunflower cultivars (Helianthus annuus L.) in a target population of cropping environments by simulating a range of indicators of crop performance. Optimization methods were then used to search for GEM combinations that matched desired crop specifications. Computational experiments showed that the fit of particular cultivars in specific environments is gradually increasing with the knowledge of pedo-climatic conditions. At the regional scale, tuning the choice of cultivar impacted crop performance the same magnitude as the effect of yearly genetic progress made by breeding. When considering virtual genetic material, designed by recombining plant traits, cultivar choice had a greater positive impact on crop performance and stability. Results suggested that breeding for key traits conferring plant plasticity improved cultivar global adaptation capacity whereas increasing genetic diversity allowed to choose cultivars with distinctive traits that were more adapted to specific conditions. Consequently, breeding genetic material that is both plastic and diverse may improve yield stability of agricultural systems exposed to climatic variability. We argue that process-based modeling could help enhancing spatial management of cultivated genetic diversity and could be integrated in functional breeding approaches

    Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modeling and genome-wide association

    Full text link
    Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modeling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties. The computed plant stress indicators better explain yield variation than descriptors at the climatic or crop levels. In those environments, we observed oil yield of 317 sunflower hybrids and regressed it with three selected stress indicators. The slopes of cold stress norm reaction were used as plasticity phenotypes in the following genome-wide association study. Among the 65,534 tested SNP, we identified nine QTL controlling oil yield plasticity to cold stress. Associated SNP are localized in genes previously shown to be involved in cold stress responses: oligopeptide transporters, LTP, cystatin, alternative oxidase, or root development. This novel approach opens new perspectives to identify genomic regions involved in genotype-by-environment interaction of a complex traits to multiple stresses in realistic natural or agronomical conditions.Comment: 12 pages, 5 figures, Plant, Cell and Environmen

    Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus)

    Get PDF
    Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a large plant-specific gene family involved in regulating development, senescence, and responses to biotic and abiotic stresses. The main goal of this work was to identify sunflower NAC TF (HaNAC) and their association with senescence, studying their orthologous to understand possible functional relationships between genes of different species. To clarify the orthologous relationships, we used an in-depth comparative study of four divergent taxa, in dicots and monocots, with completely sequenced genomes (Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa). These orthologous groups provide a curated resource for large scale protein sequence annotation of NAC TF. From the 151 HaNAC genes detected in the latest version of the sunflower genome, 50 genes were associated with senescence traits. These genes showed significant differential expression in two contrasting lines according to an RNAseq assay. An assessment of overexpressing the Arabidopsis line for HaNAC001 (a gene of the same orthologous group of Arabidopsis thaliana ORE1) revealed that this line displayed a significantly higher number of senescent leaves and a pronounced change in development rate. This finding suggests HaNAC001 as an interesting candidate to explore the molecular regulation of senescence in sunflower

    A Gene-Phenotype Network Based on Genetic Variability for Drought Responses Reveals Key Physiological Processes in Controlled and Natural Environments

    Get PDF
    Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions

    Gene banks for wild and cultivated sunflower genetic resources

    Get PDF
    Modern breeding of sunflower (Helianthus annuus L.), which started 100 years ago, increased the number and the diversity of cultivated forms. In addition, for more than 50 years, wild sunflower and other Helianthus species have been collected in North America where they all originated. Collections of both cultivated and wild forms are maintained in gene banks in many countries where sunflower is an important crop, with some specificity according to the availability of germplasm and to local research and breeding programmes. Cultivated material includes land races, open pollinated varieties, synthetics and inbred lines. The majority of wild accessions are ecotypes of wild Helianthus annuus, but also 52 other species of Helianthus and a few related genera. The activities of three gene banks, in USA, France and Serbia, are described in detail, supplemented by data from seven other countries. Past and future uses of the genetic resources for environmental adaptation and breeding are discussed in relation to genomic and improved phenotypic knowledge of the cultivated and wild accessions available in the gene banks.L’amélioration moderne du tournesol (Helianthus annuus L.) a débuté il y a un siècle, diversifiant et augmentant le nombre des formes cultivées du tournesol. De plus, des collectes de tournesols sauvages et d’espèces du genre Helianthus ont lieu depuis 50 ans en Amérique du Nord d’où ils sont tous originaires. Ainsi, des collections de tournesols cultivés et sauvages sont conservées par des centres de ressources génétiques dans de nombreux pays où le tournesol est une culture importante. Chacun d’eux présente des spécificités par rapport aux ressources génétiques maintenues, en fonction des programmes de recherche ou de sélection variétale locales. Le matériel génétique cultivé comprend des écotypes, des populations et des lignées tandis que les accessions sauvages correspondent eux écotypes d’Helianthus annuus sauvages et des 52 autres espèces apparentées du genre Helianthus. Les activités de trois centres de ressources génétiques des États-Unis, de la France et de la Serbie sont décrites en détail, complétées par des données provenant des centres de sept autres pays. L’historique de l’utilisation des ressources génétiques et les perspectives futures pour l’adaptation des variétés à l’environnement sont discutés ainsi que leur caractérisation au niveau génomique et phénotypique.The Supplementary Material is available at [https://www.ocljournal.org/10.1051/ocl/2020004/olm]
    • …
    corecore