486 research outputs found

    Nucleation versus Spinodal decomposition in a first order quark hadron phase transition

    Get PDF
    We investigate the scenario of homogeneous nucleation for a first order quark-hadron phase transition in a rapidly expanding background of quark gluon plasma. Using an improved preexponential factor for homogeneous nucleation rate, we solve a set of coupled equations to study the hadronization and the hydrodynamical evolution of the matter. It is found that significant supercooling is possible before hadronization begins. This study also suggests that spinodal decomposition competes with nucleation and may provide an alternative mechanism for phase conversion particularly if the transition is strong enough and the medium is nonviscous. For weak enough transition, the phase conversion may still proceed via homogeneous nucleation.Comment: LaTeX, 10 pages with 7 Postscript figures, more discussions and referencese added, typos correcte

    X-Ray Scattering Measurements of the Transient Structure of a Driven Charge-Density-Wave

    Full text link
    We report time-resolved x-ray scattering measurements of the transient structural response of the sliding {\bf Q}1_{1} charge-density-wave (CDW) in NbSe3_{3} to a reversal of the driving electric field. The observed time scale characterizing this response at 70K varies from ∌\sim 15 msec for driving fields near threshold to ∌\sim 2 msec for fields well above threshold. The position and time-dependent strain of the CDW is analyzed in terms of a phenomenological equation of motion for the phase of the CDW order parameter. The value of the damping constant, Îł=(3.2±0.7)×10−19\gamma = (3.2 \pm 0.7) \times 10^{-19} eV ⋅\cdot seconds ⋅\cdot \AA−3^{-3}, is in excellent agreement with the value determined from transport measurements. As the driving field approaches threshold from above, the line shape becomes bimodal, suggesting that the CDW does not depin throughout the entire sample at one well-defined voltage.Comment: revtex 3.0, 7 figure

    Electron scattering in multi-wall carbon-nanotubes

    Full text link
    We analyze two scattering mechanisms that might cause intrinsic electronic resistivity in multi-wall carbon nanotubes: scattering by dopant impurities, and scattering by inter-tube electron-electron interaction. We find that for typically doped multi-wall tubes backward scattering at dopants is by far the dominating effect.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Dynamics of a faceted nematic-smectic B front in thin-sample directional solidification

    Full text link
    We present an experimental study of the directional-solidification patterns of a nematic - smectic B front. The chosen system is C_4H_9-(C_6H_{10})_2CN (in short, CCH4) in 12 \mu m-thick samples, and in the planar configuration (director parallel to the plane of the sample). The nematic - smectic B interface presents a facet in one direction -- the direction parallel to the smectic layers -- and is otherwise rough, and devoid of forbidden directions. We measure the Mullins-Sekerka instability threshold and establish the morphology diagram of the system as a function of the solidification rate V and the angle theta_{0} between the facet and the isotherms. We focus on the phenomena occurring immediately above the instability threshold when theta_{0} is neither very small nor close to 90^{o}. Under these conditions we observe drifting shallow cells and a new type of solitary wave, called "faceton", which consists essentially of an isolated macroscopic facet traveling laterally at such a velocity that its growth rate with respect to the liquid is small. Facetons may propagate either in a stationary, or an oscillatory way. The detailed study of their dynamics casts light on the microscopic growth mechanisms of the facets in this system.Comment: 12 pages, 19 figures, submitted to Phys. Rev.

    The Role of Friction in Compaction and Segregation of Granular Materials

    Full text link
    We investigate the role of friction in compaction and segregation of granular materials by combining Edwards' thermodynamic hypothesis with a simple mechanical model and mean-field based geometrical calculations. Systems of single species with large friction coefficients are found to compact less. Binary mixtures of grains differing in frictional properties are found to segregate at high compactivities, in contrary to granular mixtures differing in size, which segregate at low compactivities. A phase diagram for segregation vs. friction coefficients of the two species is generated. Finally, the characteristics of segregation are related directly to the volume fraction without the explicit use of the yet unclear notion of compactivity.Comment: 9 pages, 6 figures, submitted to Phys. Rev.

    Homogeneous nucleation of quark-gluon plasma, finite size effects and long-lived metastable objects

    Get PDF
    The general formalism of homogeneous nucleation theory is applied to study the hadronization pattern of the ultra-relativistic quark-gluon plasma (QGP) undergoing a first order phase transition. A coalescence model is proposed to describe the evolution dynamics of hadronic clusters produced in the nucleation process. The size distribution of the nucleated clusters is important for the description of the plasma conversion. The model is most sensitive to the initial conditions of the QGP thermalization, time evolution of the energy density, and the interfacial energy of the plasma-hadronic matter interface. The rapidly expanding QGP is first supercooled by about ΔT=T−Tc=4−6\Delta T = T - T_c = 4-6 %. Then it reheats again up to the critical temperature T_c. Finally it breaks up into hadronic clusters and small droplets of plasma. This fast dynamics occurs within the first 5−10fm/c5-10 fm/c. The finite size effects and fluctuations near the critical temperature are studied. It is shown that a drop of longitudinally expanding QGP of the transverse radius below 4.5 fm can display a long-lived metastability. However, both in the rapid and in the delayed hadronization scenario, the bulk pion yield is emitted by sources as large as 3-4.5 fm. This may be detected experimentally both by a HBT interferometry signal and by the analysis of the rapidity distributions of particles in narrow p_T-intervals at small p_T on an event-by-event basis.Comment: 29 pages, incl. 12 figures and 1 table; to be published in Phys. Rev.

    Microscopic Aspects of Stretched Exponential Relaxation (SER) in Homogeneous Molecular and Network Glasses and Polymers

    Full text link
    Because the theory of SER is still a work in progress, the phenomenon itself can be said to be the oldest unsolved problem in science, as it started with Kohlrausch in 1847. Many electrical and optical phenomena exhibit SER with probe relaxation I(t) ~ exp[-(t/{\tau}){\beta}], with 0 < {\beta} < 1. Here {\tau} is a material-sensitive parameter, useful for discussing chemical trends. The "shape" parameter {\beta} is dimensionless and plays the role of a non-equilibrium scaling exponent; its value, especially in glasses, is both practically useful and theoretically significant. The mathematical complexity of SER is such that rigorous derivations of this peculiar function were not achieved until the 1970's. The focus of much of the 1970's pioneering work was spatial relaxation of electronic charge, but SER is a universal phenomenon, and today atomic and molecular relaxation of glasses and deeply supercooled liquids provide the most reliable data. As the data base grew, the need for a quantitative theory increased; this need was finally met by the diffusion-to-traps topological model, which yields a remarkably simple expression for the shape parameter {\beta}, given by d*/(d* + 2). At first sight this expression appears to be identical to d/(d + 2), where d is the actual spatial dimensionality, as originally derived. The original model, however, failed to explain much of the data base. Here the theme of earlier reviews, based on the observation that in the presence of short-range forces only d* = d = 3 is the actual spatial dimensionality, while for mixed short- and long-range forces, d* = fd = d/2, is applied to four new spectacular examples, where it turns out that SER is useful not only for purposes of quality control, but also for defining what is meant by a glass in novel contexts. (Please see full abstract in main text

    Persistent Spin Currents in Helimagnets

    Full text link
    We demonstrate that weak external magnetic fields generate dissipationless spin currents in the ground state of systems with spiral magnetic order. Our conclusions are based on phenomenological considerations and on microscopic mean-field theory calculations for an illustrative toy model. We speculate on possible applications of this effect in spintronic devices.Comment: 9 pages, 6 figures, updated version as published, Journal referenc

    Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes

    Get PDF
    The electronic properties of carbon nanotubes are investigated in the presence of disorder and a magnetic field parallel or perpendicular to the nanotube axis. In the parallel field geometry, the ϕ0(=hc/e)\phi_{0}(=hc/e)-periodic metal-insulator transition (MIT) induced in metallic or semiconducting nanotubes is shown to be related to a chirality-dependent shifting of the energy of the van Hove singularities (VHSs). The effect of disorder on this magnetic field-related mechanism is considered with a discussion of mean free paths, localization lengths and magnetic dephasing rate in the context of recent experiments.Comment: 22 pages, 6 Postscript figures. submitted to Phys. Rev.

    The half-lives for 24Na, 72Ga and 140La

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22610/1/0000160.pd
    • 

    corecore