31,181 research outputs found

    Stray light in the Infrared Astronomical Satellite (IRAS)

    Get PDF
    Changes made to the telescope and critical objects considered in modeling these changes into the APART program are described. The optical system was analyzed for scattered light, diffracted then scattered radiation, and thermally emitted radiation. The damaged area of the primary to mirror was also examined. Results are presented in tables and graphs

    Development of a real-time full-field range imaging system

    Get PDF
    This article describes the development of a full-field range imaging system employing a high frequency amplitude modulated light source and image sensor. Depth images are produced at video frame rates in which each pixel in the image represents distance from the sensor to objects in the scene. The various hardware subsystems are described as are the details about the firmware and software implementation for processing the images in real-time. The system is flexible in that precision can be traded off for decreased acquisition time. Results are reported to illustrate this versatility for both high-speed (reduced precision) and high-precision operating modes

    Deterministic cavity quantum electrodynamics with trapped ions

    Get PDF
    We have employed radio-frequency trapping to localize a single 40Ca+-ion in a high-finesse optical cavity. By means of laser Doppler cooling, the position spread of the ion's wavefunction along the cavity axis was reduced to 42 nm, a fraction of the resonance wavelength of ionized calcium (λ = 397 nm). By controlling the position of the ion in the optical field, continuous and completely deterministic coupling of ion and field was realized. The precise three-dimensional location of the ion in the cavity was measured by observing the fluorescent light emitted upon excitation in the cavity field. The single-ion system is ideally suited to implement cavity quantum electrodynamics under cw conditions. To this end we operate the cavity on the D3/2–P1/2 transition of 40Ca+ (λ = 866 nm). Applications include the controlled generation of single-photon pulses with high efficiency and two-ion quantum gates

    Infrared Astronomical Satellite (IRAS) analysis of the transmittance of off-axis energy due to scattering and diffraction

    Get PDF
    Stray light transmittance is analyzed. Mathematical models are evaluated. The results of scatter and diffraction are considered separately, and the combined transmittance values evaluated

    Distribution theory for Schr\"odinger's integral equation

    Get PDF
    Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schr\"odinger's equation. This paper, in contrast, investigates the integral form of Schr\"odinger's equation. While both forms are known to be equivalent for smooth potentials, this is not true for distributional potentials. Here, we assume that the potential is given by a distribution defined on the space of discontinuous test functions. First, by using Schr\"odinger's integral equation, we confirm a seminal result by Kurasov, which was originally obtained in the context of Schr\"odinger's differential equation. This hints at a possible deeper connection between both forms of the equation. We also sketch a generalisation of Kurasov's result to hypersurfaces. Second, we derive a new closed-form solution to Schr\"odinger's integral equation with a delta prime potential. This potential has attracted considerable attention, including some controversy. Interestingly, the derived propagator satisfies boundary conditions that were previously derived using Schr\"odinger's differential equation. Third, we derive boundary conditions for `super-singular' potentials given by higher-order derivatives of the delta potential. These boundary conditions cannot be incorporated into the normal framework of self-adjoint extensions. We show that the boundary conditions depend on the energy of the solution, and that probability is conserved. This paper thereby confirms several seminal results and derives some new ones. In sum, it shows that Schr\"odinger's integral equation is viable tool for studying singular interactions in quantum mechanics.Comment: 23 page

    The adjoint problem in the presence of a deformed surface: the example of the Rosensweig instability on magnetic fluids

    Full text link
    The Rosensweig instability is the phenomenon that above a certain threshold of a vertical magnetic field peaks appear on the free surface of a horizontal layer of magnetic fluid. In contrast to almost all classical hydrodynamical systems, the nonlinearities of the Rosensweig instability are entirely triggered by the properties of a deformed and a priori unknown surface. The resulting problems in defining an adjoint operator for such nonlinearities are illustrated. The implications concerning amplitude equations for pattern forming systems with a deformed surface are discussed.Comment: 11 pages, 1 figur

    SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    Get PDF
    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts

    Maturing Satellite Kinematics into a Competitive Probe of the Galaxy-Halo Connection

    Full text link
    The kinematics of satellite galaxies moving in a dark matter halo are a direct probe of the underlying gravitational potential. Thus, the phase-space distributions of satellites represent a powerful tool to determine the galaxy-halo connection from observations. By stacking the signal of a large number of satellite galaxies this potential can be unlocked even for haloes hosting a few satellites on average. In this work, we test the impact of various modelling assumptions on constraints derived from analysing satellite phase-space distributions in the non-linear, 1-halo regime. We discuss their potential to explain the discrepancy between average halo masses derived from satellite kinematics and gravitational lensing previously reported. Furthermore, we develop an updated, more robust analysis to extract constraints on the galaxy-halo relation from satellite properties in spectroscopic galaxy surveys such as the SDSS. We test the accuracy of this approach using a large number of realistic mock catalogues. Furthermore, we find that constraints derived from such an analysis are complementary and competitive with respect to the commonly used galaxy clustering and galaxy-galaxy lensing observables.Comment: 24 pages, 15 figures; resubmitted to MNRAS after first referee repor

    Feasibility study of the transonic biplane concept for transport aircraft application

    Get PDF
    Investigations were conducted to evaluate the feasibility of a transonic biplane consisting of a forward-mounted swept-back lower wing, a rear-mounted swept-forward upper wing, and a vertical fin connecting the wings at their tips. This wing arrangement results in significant reductions in induced drag relative to a monoplane designed with the same span, and it allows for a constant-section fuselage shape while closely matching an ideal area distribution curve for M = 0.95 cruise. However, no significant reductions in ramp weight were achieved for the biplane relative to a monoplane with the same mission capability. Flutter analyses of the biplane revealed both symmetric and antisymmetric instabilities that occur well below the required flutter speed. Further studies will be required to determine if acceptable flutter speeds can be achieved through the elimination of the instabilities by passive means or by active controls. Configurations designed for other missions, especially those with lower Mach numbers and lower dynamic pressures, should be examined since the geometries suitable for those design constraints might avoid the weight penalties and flutter instabilities which prevent exploitation of induced drag benefits for the configuration studied
    corecore