509 research outputs found
A note on the magnetic spatial forcing of a ferrofluid layer
We report on the response of a thin layer of ferrofluid to a spatially
modulated magnetic field. This field is generated by means of a constant
current in a special arrangement of aluminum wires. The full surface profile of
the liquid layer is recorded by means of the absorption of X-rays. The outcome
is analyzed particularly with regard to the magnetic self focusing effect under
a deformable fluid layer
MONNET: a software system for modular neural networks based on object passing
Modular neural networks integrate several neural networks and possibly standard processing methods. Tackling such models is a challenge, since various modules have to be combined, either sequentially or in parallel, and the simulations are time critical in many cases. For this, specific tools are prerequisite that are both flexible and efficient. We have developed the MONNET software system that supports the investigation of complex modular models. The design of MONNET is based on the object oriented paradigm, the environment is C++/UNIX. The basic concepts are dynamic modularity, object passing, scalability, reusability, and extensibility. MONNET features flexible and compact definition of complex simulations, and minimal overhead in order to run computationally demanding simulations efficiently
Quantifying a critical training set size for generalization and overfitting using teacher neural networks
Teacher neural networks are a systematic experimental approach to study neural networks. A teacher is a neural network that is employed to generate the examples of the training and the testing set. The weights of the teacher and the input parts of the examples are set according to some probability distribution. The input parts are then presented to the teacher neural network and recorded together with its response. A pupil neural network is then trained on this data. Hence, a neural network instead of a real or synthetic application defines the task, according to which the performance of the pupil is investigated. One issue is the dependence of the training success on the training set size. Surprisingly, there exists a critical value above which the training error drops to zero. This critical training set size is proportional to the number of weights in the neural network. A sudden transition exists for the generalization capability, too: the generalization error measured on a large independent testing set drops to zero, and the effect of overfitting vanishes. Thus, there are two regions with a sudden transition in-between: below the critical training set size, training and generalization fails, and severe overfitting occurs; above the critical training set size, training and generalization is perfect and there is no overfitting
Growth of surface undulations at the Rosensweig instability
We investigate the growth of a pattern of liquid crests emerging in a layer
of magnetic liquid when subjected to a magnetic field oriented normally to the
fluid surface. After a steplike increase of the magnetic field, the temporal
evolution of the pattern amplitude is measured by means of a Hall-sensor array.
The extracted growth rate is compared with predictions from linear stability
analysis by taking into account the proper nonlinear magnetization curve M(H).
The remaining discrepancy can be resolved by numerical calculations via the
finite-element method. By starting with a finite surface perturbation, it can
reproduce the temporal evolution of the pattern amplitude and the growth rate.
The investigations are performed for two magnetic liquids, one with low and one
with high viscosity.Comment: 12 pages, 12 figure
Midrapidity phi production in Au+Au collisions at sqrt[sNN]=130 GeV
We present the first measurement of midrapidity vector meson phi production in Au+Au collisions at RHIC (sqrt[sNN]=130 GeV) from the STAR detector. For the 11% highest multiplicity collisions, the slope parameter from an exponential fit to the transverse mass distribution is T=379±50(stat)±45(syst) MeV, the yield dN/dy=5.73±0.37(stat)±0.69(syst) per event, and the ratio N phi /Nh- is found to be 0.021±0.001(stat)±0.004(syst). The measured ratio N phi /Nh- and T for the phi meson at midrapidity do not change for the selected multiplicity bins.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang31, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
The Surface Topography of a Magnetic Fluid -- a Quantitative Comparison between Experiment and Numerical Simulation
The normal field instability in magnetic liquids is investigated
experimentally by means of a radioscopic technique which allows a precise
measurement of the surface topography. The dependence of the topography on the
magnetic field is compared to results obtained by numerical simulations via the
finite element method. Quantitative agreement has been found for the critical
field of the instability, the scaling of the pattern amplitude and the detailed
shape of the magnetic spikes. The fundamental Fourier mode approximates the
shape to within 10% accuracy for a range of up to 40% of the bifurcation
parameter of this subcritical bifurcation. The measured control parameter
dependence of the wavenumber differs qualitatively from analytical predictions
obtained by minimization of the free energy.Comment: 21 pages, 16 figures; corrected typos, added reference to Kuznetsov
and Spector(1976), S.J. Fortune(1995) and Harkins&Jordan (1930). Figures
revise
Equilibria of oligomeric proteins under high pressure – A theoretical description
High pressure methods have become a useful tool for studying protein structure and stability. Using them, various physico-chemical processes including protein unfolding, aggregation, oligomer dissociation or enzyme-activity decrease were studied on many different proteins. Oligomeric protein dissociation is a process that can perfectly utilize the potential of high-pressure techniques, as the high pressure shifts the equilibria to higher concentrations making them better observable by spectroscopic methods. This can be especially useful when the oligomeric form is highly stable at atmospheric pressure. These applications may be, however, hindered by less intensive experimental response as well as interference of the oligomerization equilibria with unfolding or aggregation of the subunits, but also by more complex theoretical description. In this study we develop mathematical models describing different kinds of oligomerization equilibria, both closed (equilibrium of monomer and the highest possible oligomer without any intermediates) and consecutive. Closed homooligomer equilibria are discussed for any oligomerization degree, while the more complex heterooligomer equilibria and the consecutive equilibria in both homo- and heterooligomers are taken into account only for dimers and trimers. In all the cases, fractions of all the relevant forms are evaluated as functions of pressure and concentration. Significant points (inflection points and extremes) of the resulting transition curves, that can be determined experimentally, are evaluated as functions of pressure and/or concentration. These functions can be further used in order to evaluate the thermodynamic parameters of the system, i.e. atmospheric-pressure equilibrium constants and volume changes of the individual steps of the oligomer-dissociation processes. © 2016 Elsevier LtdP208-12-G016, GACR, Grant Agency of the Czech RepublicGrant Agency of the Czech Republic [P208-12-G016
d-bar and 3He-bar production in sqrt[sNN] = 130 GeV Au+Au collisions
The first measurements of light antinucleus production in Au+Au collisions at the Relativistic Heavy-Ion Collider are reported. The observed production rates for d-bar and 3He-bar are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at CERN SPS energy. These analyses also indicate that the 3He-bar freeze-out volume is smaller than the d-bar freeze-out volume.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang31, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
Measurement of inclusive antiprotons from Au+Au collisions at sqrt[sNN] = 130 GeVd-bar and 3He-bar production in sqrt[sNN] = 130 GeV Au+Au collisions
We report the first measurement of inclusive antiproton production at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25<pperp<0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied31, J. Berger11, H. Bichsel30, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez33, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro31, D. Cebra5, S. Chattopadhyay31, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian33, B. Choi28, W. Christie2, J. P. Coffin13, T. M. Cormier31, J. G. Cramer30, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop33, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, K. Filimonov15, E. Finch33, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, C. A. Gagliardi27, N. Gagunashvili9, J. Gans33, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski29, O. Grachov31, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris33, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann28, M. Horsley33, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara28, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik29, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel29, J. Klay15, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde33, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell28, B. Lasiuk33, F. Laue2, A. Lebedev2, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li31, S. J. Lindenbaum19, M. A. Lisa20, F. Liu32, L. Liu32, Z. Liu32, Q. J. Liu30, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka33, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller33, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, C. F. Moore28, V. Morozov15, M. M. de Moura31, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey31, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov31, T. Pawlak29, V. Perevoztchikov2, W. Peryt29, V. A. Petrov10, E. Platner24, J. Pluta29, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle30, C. Pruneau31, S. Radomski29, G. Rai15, O. Ravel26, R. L. Ray28, S. V. Razin9,12, D. Reichhold8, J. G. Reid30, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, V. Rykov31, I. Sakrejda15, J. Sandweiss33, A. C. Saulys2, I. Savin10, J. Schambach28, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov33, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky31, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide31, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas29, J. Takahashi25, A. H. Tang14, J. H. Thomas15, M. Thompson3, V. Tikhomirov18, T. A. Trainor30, S. Trentalange6, R. E. Tribble27, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin31, F. Wang23, H. Ward28, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu2, A. E. Yakutin22, E. Yamamoto15, J. Yang6, P. Yepes24, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang33, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
- …