The normal field instability in magnetic liquids is investigated
experimentally by means of a radioscopic technique which allows a precise
measurement of the surface topography. The dependence of the topography on the
magnetic field is compared to results obtained by numerical simulations via the
finite element method. Quantitative agreement has been found for the critical
field of the instability, the scaling of the pattern amplitude and the detailed
shape of the magnetic spikes. The fundamental Fourier mode approximates the
shape to within 10% accuracy for a range of up to 40% of the bifurcation
parameter of this subcritical bifurcation. The measured control parameter
dependence of the wavenumber differs qualitatively from analytical predictions
obtained by minimization of the free energy.Comment: 21 pages, 16 figures; corrected typos, added reference to Kuznetsov
and Spector(1976), S.J. Fortune(1995) and Harkins&Jordan (1930). Figures
revise