8,089 research outputs found

    A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics

    Get PDF
    A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale “source” fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation

    Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides

    Get PDF
    The direct synthesis of NOx from N2 and O2 by non-thermal plasma at an atmospheric pressure and low temperature is presented, which is considered to be an attractive option for replacement of the Haber-Bosch process. In this study, the direct synthesis of NOx was studied by packing different catalyst support materials in a dielectric barrier discharge (DBD) reactor. The support materials and their particle sizes both had a significant effect on the concentration of NOx. This is attributed to different surface areas, relative dielectric constants and particles shapes. The nitrogen could be fixed at substantially lowered temperatures by employing non-thermal plasma-catalytic DBD reactor, which can be used as an alternative technology for low temperature synthesis. The γ-Al2O3 with smallest particles size of 250–160 μm, gave the highest concentration of NOx and the lowest specific energy consumption of all the tested materials and particle sizes. The NOx concentration of 5700 ppm was reached at the highest residence time of 0.4 s and an N2/O2 feed ratio of 1 was found to be the most optimum for NOx production. In order to intensify the NOx production in plasma, a series of metal oxide catalysts supported on γ-Al2O3 were tested in a packed DBD reactor. A 5% WO3/γ-Al2O3 catalyst increased the NOx concentration further by about 10% compared to γ-Al2O3, while oxidation catalysts such as Co3O4 and PbO provided a minor (∼5%) improvement. These data suggest that oxygen activation plays a minor role in plasma catalytic nitrogen fixation under the studied conditions with the main role ascribed to the generation of microdischarges on sharp edges of large-surface area plasma catalysts. However, when the loading of active metal oxides was increased to 10%, NO selectivity decreased, suggesting possibility of thermal oxidation of NO to NO2 through reaction with surface oxygen species

    Non-Fermi liquid states in the pressurized CeCu2(Si1xGex)2CeCu_2(Si_{1-x}Ge_x)_2 system: two critical points

    Full text link
    In the archetypal strongly correlated electron superconductor CeCu2_2Si2_2 and its Ge-substituted alloys CeCu2_2(Si1x_{1-x}Gex_{x})2_2 two quantum phase transitions -- one magnetic and one of so far unknown origin -- can be crossed as a function of pressure \cite{Yuan 2003a}. We examine the associated anomalous normal state by detailed measurements of the low temperature resistivity (ρ\rho) power law exponent α\alpha. At the lower critical point (at pc1p_{c1}, 1α1.51\leq\alpha\leq 1.5) α\alpha depends strongly on Ge concentration xx and thereby on disorder level, consistent with a Hlubina-Rice-Rosch scenario of critical scattering off antiferromagnetic fluctuations. By contrast, α\alpha is independent of xx at the upper quantum phase transition (at pc2p_{c2}, α1\alpha\simeq 1), suggesting critical scattering from local or Q=0 modes, in agreement with a density/valence fluctuation approach.Comment: 4 pages, including 4 figures. New results added. Significant changes on the text and Fig.

    Identification of a novel TSC2 c.3610G > A, p.G1204R mutation contribute to aberrant splicing in a patient with classical tuberous sclerosis complex: a case report

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in any organ systems. Mutations in the TSC1 or TSC2 gene lead to the dysfunction of hamartin or tuberin proteins, which cause tuberous sclerosis complex. Case presentation: We describe the clinical characteristics of patients from a Chinese family with tuberous sclerosis complex and analyze the functional consequences of their causal genetic mutations. A novel heterozygous mutation (c.3610G &gt; A) at the last nucleotide of exon 29 in TSC2 was identified. On the protein level, this variant was presumed to be a missense mutation (p.Gly1204Arg). However, the splicing assay revealed that this mutation also leads to the whole TSC2 exon 29 skipping, besides the wild-type transcript. The mutated transcript results in an in-frame deletion of 71 amino acids (p.Gly1133_Thr1203del) and its ratio with the normal splice product is of about 44:56. Conclusions: The novel c.3610G &gt; A TSC2 mutation was identified in association with tuberous sclerosis complex. And it was proven to code both for a missense-carrying transcript (56%), and for an isoform lacking exon 29 (44%)

    14C contamination testing in natural abundance laboratories: a new preparation method using wet chemical oxidation and some experiences

    Get PDF
    Substances enriched with radiocarbon can easily contaminate samples and laboratories used for natural abundance measurements. We have developed a new method using wet chemical oxidation for swabbing laboratories and equipment to test for 14C contamination. Here, we report the findings of 18 months’ work and more than 800 tests covering studies at multiple locations. Evidence of past and current use of enriched 14C was found at all but one location and a program of testing and communication was used to mitigate its effects. Remediation was attempted with mixed success and depended on the complexity and level of the contamination. We describe four cases from different situations

    The nature of Ho magnetism in multiferroic HoMnO3

    Full text link
    Using x-ray resonant magnetic scattering and x-ray magnetic circular dichroism, techniques that are element specific, we have elucidated the role of Ho3+ in multiferroic HoMnO3. In zero field, Ho3+ orders antiferromagnetically with moments aligned along the hexagonal c direction below 40 K, and undergoes a transition to another magnetic structure below 4.5 K. In applied electric fields of up to 1x10^7 V/m, the magnetic structure of Ho3+ remains unchanged.Comment: 4 pages, 3 figures Manuscript accepted for publication in Phys. Rev. Lett. 200

    A Model for Backscattering from Quasi Periodic Corn Canopies at L-Band

    Get PDF
    In this study, a model for backscattering at L-band from a corn canopy is proposed. The canopy consists of a quasi-periodic distribution of stalks and a random distribution of leaves. The Distorted Born Approximation (DBA) is employed to calculate the single scattered return from the corn field. The new feature of the method is that the coherence of the stalks in the row direction is incorporated in the model in a systematic fashion. Since the wavelength is on the order of the distance between corn stalks in a row, grating lobe behavior is observed at certain azimuth angles of incidence. The results are compared with experimental values measured in Huntsville, Alabama in 1998. The mean field and the effective dielectric constant of the canopy are obtained by using the Foldy approximation. The stalks are placed in the effective medium in a two dimensional lattice to simulate the row structure of a corn field. In order to mimic a real corn field, a quasi-periodic stalk distribution is assumed where the stalks are given small random perturbations about their lattice locations. Corn leaves are also embedded in the effective medium and the backscattered field from the stalks and the leaves is computed. The backscattering coefficient is calculated and averaged over successive stalk position perturbations. It is assumed that soil erosion has smoothed the soil sufficiently so that it can be assumed flat. Corn field backscatter data was collected from cornfields during the Huntsville 98 experimental campaign held at Alabama A&M University Research Station, Huntsville, Alabama in 1998 using the NASA/GW truck mounted radar. Extensive ground truth data was collected. This included soil moisture measurements and corn plant architectural data to be used in the model. In particular, the distances between the stalks in a single row have been measured. The L-band radar backscatter data was collected for both H and V polarizations and for look angles of 15o and 45o over a two week period under varying soil moisture conditions. These measured backscattering values will be compared with the model backscattering values and a discussion of the results will be presented

    Extinction toward the Compact HII Regions G-0.02-0.07

    Get PDF
    The four HII regions in the Sgr A East complex: A, B, C, and D, represent evidence of recent massive star formation in the central ten parsecs. Using Paschen-alpha images taken with HST and 8.4 GHz VLA data, we construct an extinction map of A-D, and briefly discuss their morphology and location.Comment: 2 pages, 1 figure. To be published in the Astronomical Society of the Pacific Conference Series Proceedings of the Galactic Center Workshop 2009, Shangha

    The Chandra Detection of Galactic Center X-ray Features G359.89-0.08 and G359.54+0.18

    Get PDF
    We report on the detection of two elongated X-ray features G359.89-0.08 and G359.54+0.18 in the Galactic center (GC) region using the Chandra X-ray Observatory. G359.89-0.08 is an elongated X-ray feature located \sim2\arcmin in projection south of the center of the Galaxy, SgrA^*. This X-ray feature source is partially coincident with a slightly curved (``wisp''-like) non-thermal radio source. The X-ray spectrum of G359.89-0.08 can be best characterized as non-thermal, with a photon index of 2. The morphological and spectral characteristics of the X-ray and radio emission associated with G359.89-0.08 are best interpreted as the synchrotron emission from a ram-pressure confined pulsar wind nebula. G359.54+0.18 is one of the most prominent radio non-thermal filaments (NTFs) in the GC region, located \sim30\arcmin in projection from SgrA^*. A narrow (\sim10\arcsec) filament of X-ray emission appears to arise from one of the two strands that comprise the radio NTF. Although the photon statistics are poor for this source, the X-ray emission is also likely to be non-thermal in nature. Several models for the production of X-ray emission in G359.54+0.18 are discussed.Comment: 19 pages with 6 figures included, accepted by A

    A difference between continuous and absolutely continuous norms in Banach function spaces

    Full text link
    corecore