40,231 research outputs found
A Laplace Transform Method for Molecular Mass Distribution Calculation from Rheometric Data
Polydisperse linear polymer melts can be microscopically described by the
tube model and fractal reptation dynamics, while on the macroscopic side the
generalized Maxwell model is capable of correctly displaying most of the
rheological behavior. In this paper, a Laplace transform method is derived and
different macroscopic starting points for molecular mass distribution
calculation are compared to a classical light scattering evaluation. The
underlying assumptions comprise the modern understanding on polymer dynamics in
entangled systems but can be stated in a mathematically generalized way. The
resulting method is very easy to use due to its mathematical structure and it
is capable of calculating multimodal molecular mass distributions of linear
polymer melts
Measurements in the Turbulent Boundary Layer at Constant Pressure in Subsonic and Supersonic Flow. Part 2: Laser-Doppler Velocity Measurements
A description of both the mean and the fluctuating components of the flow, and of the Reynolds stress as observed using a dual forward scattering laser-Doppler velocimeter is presented. A detailed description of the instrument and of the data analysis techniques were included in order to fully document the data. A detailed comparison was made between the laser-Doppler results and those presented in Part 1, and an assessment was made of the ability of the laser-Doppler velocimeter to measure the details of the flows involved
Recommended from our members
Role of government policy in nutrition-barriers to and opportunities for healthier eating
The moduli space of hypersurfaces whose singular locus has high dimension
Let be an algebraically closed field and let and be integers with
and Consider the moduli space of
hypersurfaces in of fixed degree whose singular locus is
at least -dimensional. We prove that for large , has a unique
irreducible component of maximal dimension, consisting of the hypersurfaces
singular along a linear -dimensional subspace of . The proof
will involve a probabilistic counting argument over finite fields.Comment: Final version, including the incorporation of all comments by the
refere
Resistivity studies under hydrostatic pressure on a low-resistance variant of the quasi-2D organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br: quest for intrinsic scattering contributions
Resistivity measurements have been performed on a low (LR)- and high
(HR)-resistance variant of the kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br superconductor.
While the HR sample was synthesized following the standard procedure, the LR
crystal is a result of a somewhat modified synthesis route. According to their
residual resistivities and residual resistivity ratios, the LR crystal is of
distinctly superior quality. He-gas pressure was used to study the effect of
hydrostatic pressure on the different transport regimes for both variants. The
main results of these comparative investigations are (i) a significant part of
the inelastic-scattering contribution, which causes the anomalous rho(T)
maximum in standard HR crystals around 90 K, is sample dependent, i.e.
extrinsic in nature, (ii) the abrupt change in rho(T) at T* approx. 40 K from a
strongly temperature-dependent behavior at T > T* to an only weakly T-dependent
rho(T) at T < T* is unaffected by this scattering contribution and thus marks
an independent property, most likely a second-order phase transition, (iii)
both variants reveal a rho(T) proportional to AT^2 dependence at low
temperatures, i.e. for T_c < T < T_0, although with strongly sample-dependent
coefficients A and upper bounds for the T^2 behavior measured by T_0. The
latter result is inconsistent with the T^2 dependence originating from coherent
Fermi-liquid excitations.Comment: 8 pages, 6 figure
- …
