1,089 research outputs found

    A Modification and Analysis of Lagrangian Trajectory Modeling and Granular Dynamics of Lunar Dust Particles

    Get PDF
    A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow

    Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    Full text link
    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.Comment: 26 pages, 11 figures, 3 table

    The Economics of Crypto-Democracy

    Get PDF
    Democracy is an economic problem of choice constrained by transaction costs and information costs. Society must choose between competing institutional frameworks for the conduct of voting and elections. These decisions are constrained by the technologies and institutions available. Blockchains are a governance technology that reduces the costs of consensus, coordinating information, and monitoring and enforcing contracts. Blockchain could be applied to the voting and electoral process to form a crypto-democracy. Analysed through the Institutional Possibility Frontier framework, we propose that blockchain lowers disorder and dictatorship costs of the voting and electoral process. In addition to efficiency gains, this technological progress has implications for decentralised institutions of voting. One application of crypto-democracy, quadratic voting, is discussed

    Creating a Culture of Voting in Direct and Generalist Practice: Training Field Instructors

    Get PDF
    Social workers have an ethical responsibility to be engaged in policy change, regardless of their practice area or specialization. Voter engagement and the importance of political power through voting is often overlooked in the literature as a valid and important component of social work practice. Creating a culture of nonpartisan voter engagement in practice settings can help empower individuals who have been historically and intentionally disenfranchised from our electoral system. Training for field instructors, faculty, and field staff is a key aspect of voter engagement in social work education. Unfortunately, social work education is unlikely to include substantive content on voter engagement or its connection to social work practice and impact. This article presents one component of a model for integrating voter engagement into social work education: the provision of training for field instructors on nonpartisan voter engagement at two universities over two years. Evaluation findings suggest that pre-existing levels of political efficacy affect the reaction of field instructors to nonpartisan voter engagement training. Furthermore, findings indicate that field instructors who receive voter engagement training are more likely to serve as resources for their students and to consider voter engagement as part of their own practice. We offer evidence on the important role field educators can play in the success of the larger national effort to integrate voter engagement in social work education. Increasing awareness of what social workers, nonprofit, and public agencies are allowed--or even required--to do is a critical first step

    Surgical Transplantation of Mouse Neural Stem Cells into the Spinal Cords of Mice Infected with Neurotropic Mouse Hepatitis Virus

    Get PDF
    Mice infected with the neurotropic JHM strain of mouse hepatitis virus (MHV) develop pathological and clinical outcomes similar to patients with the demyelinating disease Multiple Sclerosis (MS). We have shown that transplantation of NSCs into the spinal cords of sick mice results in a significant improvement in both remyelination and in clinical outcome. Cell replacement therapies for the treatment of chronic neurologic diseases are now a reality and in vivo models are vital in understanding the interactions between the engrafted cells and host tissue microenvironment. This presentation provides an adapted method for transplanting cells into the spinal cord of JHMV-infected mice. In brief, we provide a procedure for i) preparation of NSCs prior to transplant, ii) pre-operative care of mice, iii) exposure of the spinal cord via laminectomy, iv) stereotactic injection of NSCs, and iv) post-operative care

    Visible light carrier generation in co-doped epitaxial titanate films

    Full text link
    Perovskite titanates such as SrTiO3_{3} (STO) exhibit a wide range of important functional properties, including high electron mobility, ferroelectricity, and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications, however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr3+^{3+} dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to between 2.4 and 2.7 eV depending on doping levels. Transient reflectance spectroscopy measurements are in agreement with the observations from ellipsometry and confirm that optically generated carriers are present for longer than 2 ns. Finally, through photoelectrochemical methylene blue degradation measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.Comment: 19 pages including supplement, 8 figures (3 main, 5 supplement

    Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    Get PDF
    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6

    Collective Power to Create Political Change: Increasing the Political Efficacy and Engagement of Social Workers

    Get PDF
    Because social workers are called to challenge social injustices and create systemic change to support the well-being of individuals and communities, it is essential that social workers develop political efficacy: belief that the political system can work and they can influence the system. This study explored the impact of an intensive political social work curriculum on political efficacy and planned political engagement among social work students and practitioners. The findings suggest this model of delivering a political social work curriculum effectively increases internal, external, and overall political efficacy, and that increasing political efficacy has promise for increasing future political engagement

    The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster

    Get PDF
    The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity
    • …
    corecore