121 research outputs found

    Eye on a Dish Models to Evaluate Splicing Modulation

    Get PDF
    Inherited retinal dystrophies, such as Leber congenital amaurosis, Stargardt disease, and retinitis pigmentosa, are characterized by photoreceptor dysfunction and death and currently have few treatment options. Recent technological advances in induced pluripotent stem cell (iPSC) technology and differentiation methods mean that human photoreceptors can now be studied in vitro. For example, retinal organoids provide a platform to study the development of the human retina and mechanisms of diseases in the dish, as well as being a potential source for cell transplantation. Here, we describe differentiation protocols for 3D cultures that produce retinal organoids containing photoreceptors with rudimentary outer segments. These protocols can be used as a model to understand retinal disease mechanisms and test potential therapies, including antisense oligonucleotides (AONs) to alter gene expression or RNA processing. This "retina in a dish" model is well suited for use with AONs, as the organoids recapitulate patient mutations in the correct genomic and cellular context, to test potential efficacy and examine off-target effects on the translational path to the clinic

    Racial and Ethnic Disparities in Teenage Pregnancy: Perspectives from Teens and Community Members in Connecticut

    Get PDF
    BACKGROUND: Teenage pregnancy has negative consequences for mother and baby, for example, high school drop out and low birth weight, respectively. Overall, Connecticut (CT) has one of the lowest teen pregnancy rates in the United States. However, a great disparity exists between whites and other ethnicities. Black teens are 4 – 5 times as likely to give birth than their white counterparts and Latino teens are 8 times as likely to give birth as white teens. Planned Parenthood of Southern New England (PPSNE) has identified this disparity and seeks the assistance of our research team in developing targets and programming to prevent teen pregnancies. METHODS: Teen focus groups and key informant interviews were used to examine barriers to teen birth reduction among ethnic minorities in three cities (Hartford, New London, and New Haven, CT). We develop ed an action plan for PPSNE that identifies potential barriers to preventing teenage pregnancy, identifies potential community partnerships , and includes population attributable risk estimation s to demonstrate potential decreases in teen pregnancy by race/ethnicity. RESULTS: Three focus group sessions were completed with a total of 22 adolescent participants (14 females and 8 males) between the ages of 15 and 21. Focus group respondents attributed teen pregnancy to desire for pregnancy, perceived invincibility, lack of knowledge/sexual education and family precedent. The teens indicated that a more substantial presence from peer educators and improved sex education in schools could have an impact on reducing teen pregnancy in minorities. Two key informant interviews with community organization staff members revealed overlapping themes of inadequate education, inadequate support to stay in school, and lack of support for pregnancy prevention programs. Overall, respondents had positive perceptions of Planned Parenthood. IMPLICATIONS: Results from this research will provide information to PPSNE regarding the necessary steps to design programs aimed at reducing disparities in teen birth rates in Connecticut. By focusing on Black and Latino teens, we hope to facilitate the development of culturally competent initiatives that result in the elimination of disparities surrounding teen births. Partnership development between PPSNE and community organizations can foster successful and sustainable programs in our populations of interest.https://elischolar.library.yale.edu/ysph_pbchrr/1038/thumbnail.jp

    SDSS-IV MaNGA: The link between bars and the early cessation of star formation in spiral galaxies

    Get PDF
    Bars are common in low-redshift disk galaxies, and hence quantifying their influence on their host is of importance to the field of galaxy evolution. We determine the stellar populations and star formation histories of 245 barred galaxies from the MaNGA galaxy survey, and compare them to a mass-and morphology-matched comparison sample of unbarred galaxies. At fixed stellar mass and morphology, barred galaxies are optically redder than their unbarred counterparts. From stellar population analysis using the full spectral fitting code Starlight, we attribute this difference to both older and more metal-rich stellar populations. Dust attenuation however, is lower in the barred sample. The star formation histories of barred galaxies peak earlier than their non-barred counterparts, and the galaxies build up their mass at earlier times. We can detect no significant differences in the local environment of barred and un-barred galaxies in this sample, but find that the HI gas mass fraction is significantly lower in high-mass (M > 10 10 M) barred galaxies than their non-barred counterparts. We speculate on the mechanisms that have allowed barred galaxies to be older, more metal-rich and more gas-poor today, including the efficient redistribution of galactic fountain byproducts, and a runaway bar formation scenario in gas-poor disks. While it is not possible to fully determine the effect of the bar on galaxy quenching, we conclude that the presence of a bar and the early cessation of star formation within a galaxy are intimately linked

    SDSS IV MaNGA: full spectroscopic bulge-disc decomposition of MaNGA early-type galaxies

    Get PDF
    By applying spectroscopic decomposition methods to a sample of MaNGA early-type galaxies, we separate out spatially and kinematically distinct stellar populations, allowing us to explore the similarities and differences between galaxy bulges and discs, and how they affect the global properties of the galaxy. We find that the components have interesting variations in their stellar populations, and display different kinematics. Bulges tend to be consistently more metal rich than their disc counterparts, and while the ages of both components are comparable, there is an interesting tail of younger, more metal-poor discs. Bulges and discs follow their own distinct kinematic relationships, both on the plane of the stellar spin parameter, λR, and ellipticity, ϵ, and in the relation between stellar mass, M*, and specific angular momentum, j*, with the location of the galaxy as a whole on these planes being determined by how much bulge and disc it contains. As a check of the physical significance of the kinematic decompositions, we also dynamically model the individual galaxy components within the global potential of the galaxy. The resulting components exhibit kinematic parameters consistent with those from the spectroscopic decomposition, and though the dynamical modelling suffers from some degeneracies, the bulges and discs display systematically different intrinsic dynamical properties. This work demonstrates the value in considering the individual components of galaxies rather than treating them as a single entity, which neglects information that may be crucial in understanding where, when, and how galaxies evolve into the systems we see today

    Galaxy Zoo : 3D – crowdsourced bar, spiral, and foreground star masks for MaNGA target galaxies

    Get PDF
    Funding: Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. We gratefully acknowledge the National Science Foundation’s support of the Keck Northeast Astronomy Consortium’s REU program through grants AST-1005024 and AST-1950797, the KINSC (Koshland Integrated Natural Sciences Centre) at Haverford College for Summer Scholar funding, and the Ogden Trust, UK for support for summer undergraduate internships.The challenge of consistent identification of internal structure in galaxies – in particular disc galaxy components like spiral arms, bars, and bulges – has hindered our ability to study the physical impact of such structure across large samples. In this paper we present Galaxy Zoo: 3D (GZ:3D) a crowdsourcing project built on the Zooniverse platform that we used to create spatial pixel (spaxel) maps that identify galaxy centres, foreground stars, galactic bars, and spiral arms for 29 831 galaxies that were potential targets of the MaNGA survey (Mapping Nearby Galaxies at Apache Point Observatory, part of the fourth phase of the Sloan Digital Sky Surveys or SDSS-IV), including nearly all of the 10 010 galaxies ultimately observed. Our crowdsourced visual identification of asymmetric internal structures provides valuable insight on the evolutionary role of non-axisymmetric processes that is otherwise lost when MaNGA data cubes are azimuthally averaged. We present the publicly available GZ:3D catalogue alongside validation tests and example use cases. These data may in the future provide a useful training set for automated identification of spiral arm features. As an illustration, we use the spiral masks in a sample of 825 galaxies to measure the enhancement of star formation spatially linked to spiral arms, which we measure to be a factor of three over the background disc, and how this enhancement increases with radius.Publisher PDFPeer reviewe

    Splice-Modulating Oligonucleotide QR-110 Restores CEP290 mRNA and Function in Human c.2991+1655A>G LCA10 Models.

    Get PDF
    Leber congenital amaurosis type 10 (LCA10) is a severe inherited retinal dystrophy associated with mutations in CEP290. The deep intronic c.2991+1655A>G mutation in CEP290 is the most common mutation in LCA10 individuals and represents an ideal target for oligonucleotide therapeutics. Here, a panel of antisense oligonucleotides was designed to correct the splicing defect associated with the mutation and screened for efficacy and safety. This identified QR-110 as the best-performing molecule. QR-110 restored wild-type CEP290 mRNA and protein expression levels in CEP290 c.2991+1655A>G homozygous and compound heterozygous LCA10 primary fibroblasts. Furthermore, in homozygous three-dimensional iPSC-derived retinal organoids, QR-110 showed a dose-dependent restoration of mRNA and protein function, as measured by percentage and length of photoreceptor cilia, without off-target effects. Localization studies in wild-type mice and rabbits showed that QR-110 readily reached all retinal layers, with an estimated half-life of 58 days. It was well tolerated following intravitreal injection in monkeys. In conclusion, the pharmacodynamic, pharmacokinetic, and safety properties make QR-110 a promising candidate for treating LCA10, and clinical development is currently ongoing.This study was funded by ProQR. iPSC work in the Cheetham lab is also supported by the Wellcome Trust, Fight for Sight, RP Fighting Blindness, and Moorfields Eye Charity

    Modeling and Rescue of RP2 Retinitis Pigmentosa Using iPSC-Derived Retinal Organoids

    Get PDF
    RP2 mutations cause a severe form of X-linked retinitis pigmentosa (XLRP). The mechanism of RP2-associated retinal degeneration in humans is unclear, and animal models of RP2 XLRP do not recapitulate this severe phenotype. Here, we developed gene-edited isogenic RP2 knockout (RP2 KO) induced pluripotent stem cells (iPSCs) and RP2 patient-derived iPSC to produce 3D retinal organoids as a human retinal disease model. Strikingly, the RP2 KO and RP2 patient-derived organoids showed a peak in rod photoreceptor cell death at day 150 (D150) with subsequent thinning of the organoid outer nuclear layer (ONL) by D180 of culture. Adeno-associated virus-mediated gene augmentation with human RP2 rescued the degeneration phenotype of the RP2 KO organoids, to prevent ONL thinning and restore rhodopsin expression. Notably, these data show that 3D retinal organoids can be used to model photoreceptor degeneration and test potential therapies to prevent photoreceptor cell deat

    MFA09 (MFA 2009)

    Get PDF
    Catalogue of a culminating student exhibition held at the Mildred Lane Kemper Art Museum in 2009. Content includes A new paradigm / Carmon Colangelo -- Evolving practices / Patricia Olynyk -- Stephanie Barenz -- Carolyn Dawn Bendel -- Jacob Cruzen -- Rachel Ann Dennis -- Bryan Eaton -- Maya Escobar -- Meredith Foster -- Morgan Gehris -- Gina Grafos -- Stephen Hoskins -- Amelia Jones -- Hye Young Kim -- Anne Lindberg -- Goran Maric -- Kelda Martensen -- Erica L. Millspaugh -- Carianne Noga -- Joel Parker -- Rebecca C. Potts -- Shannon Randol -- Elaine Rickles -- Michael Kenneth Smith -- Dan Solberg -- Natalie Toney -- Glenn Tramantano -- Kathryn Trout -- J. Taylor Wallace.https://openscholarship.wustl.edu/books/1006/thumbnail.jp
    • …
    corecore