220 research outputs found
Mitogen Activated Protein Kinase Phosphatase-1 Prevents the Development of Tactile Sensitivity In a Rodent Model of Neuropathic Pain
Neuropathic pain due to nerve injury is one of the most difficult types of pain to treat. Following peripheral nerve injury, neuronal and glial plastic changes contribute to central sensitization and perpetuation of mechanical hypersensitivity in rodents. The mitogen activated protein kinase (MAPK) family is pivotal in this spinal cord plasticity. MAPK phosphatases (MKPs) limit inflammatory processes by dephosphorylating MAPKs. For example, MKP-1 preferentially dephosphorylates p-p38. Since spinal p-p38 is pivotal for the development of chronic hypersensitivity in rodent models of pain, and p-p38 inhibitors have shown clinical potential in acute and chronic pain patients, we hypothesize that induction of spinal MKP-1 will prevent the development of peripheral nerve-injury-induced hypersensitivity and p-p38 overexpression. We cloned rat spinal cord MKP-1 and optimize MKP-1 cDNA in vitro using transfections to BV-2 cells. We observed that in vitro overexpression of MKP-1 blocked lipopolysaccharide-induced phosphorylation of p38 (and other MAPKs) as well as release of pro-algesic effectors (i.e., cytokines, chemokines, nitric oxide). Using this cDNA MKP-1 and a non-viral, in vivo nanoparticle transfection approach, we found that spinal cord overexpression of MKP-1 prevented development of peripheral nerve-injury-induced tactile hypersensitivity and reduced pro-inflammatory cytokines and chemokines and the phosphorylated form of p38
Evidence for a Role of Endocannabinoids, Astrocytes and p38 Phosphorylation in the Resolution of Postoperative Pain
An alarming portion of patients develop persistent or chronic pain following surgical procedures, but the mechanisms underlying the transition from acute to chronic pain states are not fully understood. In general, endocannabinoids (ECBs) inhibit nociceptive processing by stimulating cannabinoid receptors type 1 (CB(1)) and type 2 (CB(2)). We have previously shown that intrathecal administration of a CB(2) receptor agonist reverses both surgical incision-induced behavioral hypersensitivity and associated over-expression of spinal glial markers. We therefore hypothesized that endocannabinoid signaling promotes the resolution of acute postoperative pain by modulating pro-inflammatory signaling in spinal cord glial cells.To test this hypothesis, rats receiving paw incision surgery were used as a model of acute postoperative pain that spontaneously resolves. We first characterized the concentration of ECBs and localization of CB(1) and CB(2) receptors in the spinal cord following paw incision. We then administered concomitant CB(1) and CB(2) receptor antagonists/inverse agonists (AM281 and AM630, 1 mg x kg(-1) each, i.p.) during the acute phase of paw incision-induced mechanical allodynia and evaluated the expression of glial cell markers and phosphorylated p38 (a MAPK associated with inflammation) in the lumbar dorsal horn. Dual blockade of CB(1) and CB(2) receptor signaling prevented the resolution of postoperative allodynia and resulted in persistent over-expression of spinal Glial Fibrillary Acidic Protein (GFAP, an astrocytic marker) and phospho-p38 in astrocytes. We provide evidence for the functional significance of these astrocytic changes by demonstrating that intrathecal administration of propentofylline (50 microg, i.t.) attenuated both persistent behavioral hypersensitivity and over-expression of GFAP and phospho-p38 in antagonist-treated animals.Our results demonstrate that endocannabinoid signaling via CB(1) and CB(2) receptors is necessary for the resolution of paw incision-induced behavioral hypersensitivity and for the limitation of pro-inflammatory signaling in astrocytes following surgical insult. Our findings suggest that therapeutic strategies designed to enhance endocannabinoid signaling may prevent patients from developing persistent or chronic pain states following surgery
Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation
<p>Abstract</p> <p>Background</p> <p>Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood.</p> <p>Results</p> <p>JWH015 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF) expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia.</p> <p>Conclusion</p> <p>Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.</p
Bostonia: The Boston University Alumni Magazine. Volume 10
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors
Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity
Search for gravitational-wave bursts in LIGO data from the fourth science run
The fourth science run of the LIGO and GEO 600 gravitational-wave detectors,
carried out in early 2005, collected data with significantly lower noise than
previous science runs. We report on a search for short-duration
gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency
range appearing in all three LIGO interferometers. Signal consistency tests,
data quality cuts, and auxiliary-channel vetoes are applied to reduce the rate
of spurious triggers. No gravitational-wave signals are detected in 15.5 days
of live observation time; we set a frequentist upper limit of 0.15 per day (at
90% confidence level) on the rate of bursts with large enough amplitudes to be
detected reliably. The amplitude sensitivity of the search, characterized using
Monte Carlo simulations, is several times better than that of previous
searches. We also provide rough estimates of the distances at which
representative supernova and binary black hole merger signals could be detected
with 50% efficiency by this analysis.Comment: Corrected amplitude sensitivities (7% change on average); 30 pages,
submitted to Classical and Quantum Gravit
First upper limits from LIGO on gravitational wave bursts
We report on a search for gravitational wave bursts using data from the first
science run of the LIGO detectors. Our search focuses on bursts with durations
ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity
band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than
1.6 events per day at 90% confidence level. This result is interpreted in terms
of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians)
as a function of their root-sum-square strain h_{rss}; typical sensitivities
lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on
waveform. We discuss improvements in the search method that will be applied to
future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos
and updated a few reference
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
Analysis of LIGO data for gravitational waves from binary neutron stars
We report on a search for gravitational waves from coalescing compact binary
systems in the Milky Way and the Magellanic Clouds. The analysis uses data
taken by two of the three LIGO interferometers during the first LIGO science
run and illustrates a method of setting upper limits on inspiral event rates
using interferometer data. The analysis pipeline is described with particular
attention to data selection and coincidence between the two interferometers. We
establish an observational upper limit of 1.7 \times 10^{2}M_\odot$.Comment: 17 pages, 9 figure
- …