92 research outputs found

    A discrete cluster of urinary biomarkers discriminates between active systemic lupus erythematosus patients with and without glomerulonephritis.

    Get PDF
    BackgroundManagement of lupus nephritis (LN) would be greatly aided by the discovery of biomarkers that accurately reflect changes in disease activity. Here, we used a proteomics approach to identify potential urinary biomarkers associated with LN.MethodsUrine was obtained from 60 LN patients with paired renal biopsies, 25 active non-LN SLE patients, and 24 healthy controls. Using Luminex, 128 analytes were quantified and normalized to urinary creatinine levels. Data were analyzed by linear modeling and non-parametric statistics, with corrections for multiple comparisons. A second cohort of 33 active LN, 16 active non-LN, and 30 remission LN SLE patients was used to validate the results.ResultsForty-four analytes were identified that were significantly increased in active LN as compared to active non-LN. This included a number of unique proteins (e.g., TIMP-1, PAI-1, PF4, vWF, and IL-15) as well as known candidate LN biomarkers (e.g., adiponectin, sVCAM-1, and IL-6), that differed markedly (>4-fold) between active LN and non-LN, all of which were confirmed in the validation cohort and normalized in remission LN patients. These proteins demonstrated an enhanced ability to discriminate between active LN and non-LN patients over several previously reported biomarkers. Ten proteins were found to significantly correlate with the activity score on renal biopsy, eight of which strongly discriminated between active proliferative and non-proliferative/chronic renal lesions.ConclusionsA number of promising urinary biomarkers that correlate with the presence of active renal disease and/or renal biopsy changes were identified and appear to outperform many of the existing proposed biomarkers

    Dynamic Measurements of Membrane Insertion Potential of Synthetic Cell Penetrating Peptides

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/la403370p.Cell penetrating peptides (CPPs) have been established as excellent candidates for mediating drug delivery into cells. When designing synthetic CPPs for drug delivery applications, it is important to understand their ability to penetrate the cell membrane. In this paper, anionic or zwitterionic phospholipid monolayers at the air-water interface are used as model cell membranes to monitor the membrane insertion potential of synthetic CPPs. The insertion potential of CPPs having different cationic and hydrophobic amino acids were recorded using a Langmuir monolayer approach that records peptide adsorption to model membranes. Fluorescence microscopy was used to visualize alterations in phospholipid packing due to peptide insertion. All CPPs had the highest penetration potential in the presence of anionic phospholipids. In addition, two of three amphiphilic CPPs inserted into zwitterionic phospholipids, but none of the hydrophilic CPPs did. All the CPPs studied induced disruptions in phospholipid packing and domain morphology, which were most pronounced for amphiphilic CPPs. Overall, small changes to amino acids and peptide sequences resulted in dramatically different insertion potentials and membrane reorganization. Designers of synthetic CPPs for efficient intracellular drug delivery should consider small nuances in CPP electrostatic and hydrophobic properties

    A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features

    Get PDF
    Measurement of type I interferon (IFN-I) has potential to diagnose and stratify autoimmune diseases, but existing results have been inconsistent. Interferon-stimulated-gene (ISG) based methods may be afected by the modularity of the ISG transcriptome, cell-specifc expression, response to IFN-subtypes and bimodality of expression. We developed and clinically validated a 2-score system (IFN-Score-A and -B) using Factor Analysis of 31 ISGs measured by TaqMan selected from 3-IFN-annotated modules. We evaluated these scores using in-vitro IFN stimulation as well as in sorted cells then clinically validated in a cohort of 328 autoimmune disease patients and healthy controls. ISGs varied in response to IFNsubtypes and both scores varied between cell subsets. IFN-Score-A diferentiated Systemic Lupus Erythematosus (SLE) from both Rheumatoid Arthritis (RA) and Healthy Controls (HC) (both p<0.001), while IFN-Score-B diferentiated SLE and RA from HC (both p<0.001). In SLE, both scores were associated with cutaneous and hematological (all p<0.05) but not musculoskeletal disease activity. Comparing with bimodal (IFN-high/low) classifcation, signifcant diferences in IFN-scores were found between diagnostic groups within the IFN-high group. Our continuous 2-score system is more clinically relevant than a simple bimodal classifcation of IFN status. This system should allow improvement in diagnosis, stratifcation, and therapy in IFN-mediated autoimmunity

    Connexin channels and phospholipids: association and modulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood.</p> <p>Results</p> <p>Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred.</p> <p>Conclusion</p> <p>This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.</p

    Orientation and dynamics of transmembrane peptides: the power of simple models

    Get PDF
    In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function

    Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia

    Get PDF
    Some familial platelet disorders are associated with predisposition to leukemia, myelodysplastic syndrome (MDS) or dyserythropoietic anemia. We identified a family with autosomal dominant thrombocytopenia, high erythrocyte mean corpuscular volume (MCV) and two occurrences of B cell-precursor acute lymphoblastic leukemia (ALL). Whole-exome sequencing identified a heterozygous single-nucleotide change in ETV6 (ets variant 6), c.641C>T, encoding a p.Pro214Leu substitution in the central domain, segregating with thrombocytopenia and elevated MCV. A screen of 23 families with similar phenotypes identified 2 with ETV6 mutations. One family also had a mutation encoding p.Pro214Leu and one individual with ALL. The other family had a c.1252A>G transition producing a p.Arg418Gly substitution in the DNA-binding domain, with alternative splicing and exon skipping. Functional characterization of these mutations showed aberrant cellular localization of mutant and endogenous ETV6, decreased transcriptional repression and altered megakaryocyte maturation. Our findings underscore a key role for ETV6 in platelet formation and leukemia predisposition
    corecore