70 research outputs found

    Can contrast-response functions indicate visual processing levels?

    Get PDF
    YesMany visual effects are believed to be processed at several functional and anatomical levels of cortical processing. Determining if and how the levels contribute differentially to these effects is a leading problem in visual perception and visual neuroscience. We review and analyze a combination of extant psychophysical findings in the context of neurophysiological and brain-imaging results. Specifically using findings relating to visual illusions, crowding, and masking as exemplary cases, we develop a theoretical rationale for showing how relative levels of cortical processing contributing to these effects can already be deduced from the psychophysically determined functions relating respectively the illusory, crowding and masking strengths to the contrast of the illusion inducers, of the flankers producing the crowding, and of the mask. The wider implications of this rationale show how it can help to settle or clarify theoretical and interpretive inconsistencies and how it can further psychophysical, brain-recording and brain-imaging research geared to explore the relative functional and cortical levels at which conscious and unconscious processing of visual information occur. Our approach also allows us to make some specific predictions for future studies, whose results will provide empirical tests of its validity

    Effect of annealing on the hyperfine interaction in InAs/GaAs quantum dots

    Full text link
    The hyperfine interaction of an electron with nuclei in the annealed self-assembled InAs/GaAs quantum dots is theoretically analyzed. For this purpose, the annealing process, and energy structure of the quantum dots are numerically modeled. The modeling is verified by comparison of the calculated optical transitions and of the experimental data on photoluminescence for set of the annealed quantum dots. The localization volume of the electron in the ground state and the partial contributions of In, Ga, and As nuclei to the hyperfine interaction are calculated as functions of the annealing temperature. It is established that the contribution of indium nuclei into the hyperfine interaction becomes predominant up to high annealing temperatures (T = 980 C) when the In content in the quantum dots does not exceed 25%. Effect of the nuclear spin fluctuations on the electron spin polarization is numerically modeled. Effective field of the fluctuations is found to be in good agreement with experimental data available

    Photometric variability of young brown dwarfs in the sigma Orionis open cluster

    Full text link
    We have carried out multi-epoch, time-series differential I-band photometry of a large sample of objects in the south-east region of the young (~3 Myr), nearby (~350 pc) sigma Orionis open cluster. A field of ~1000 arcmin^2 was monitored during four nights over a period of two years. Using this dataset, we have studied the photometric variability of twenty-eight brown dwarf cluster candidates with masses ranging from the stellar-substellar boundary down to the planetary-mass domain. We have found that about 50% of the sample show photometric variability on timescales from less than one hour to several days and years. The amplitudes of the I-band light curves range from less than 0.01 up to ~0.4 magnitudes. A correlation between the near-infrared excess in the K_s band, strong Halpha emission and large-amplitude photometric variation is observed. We briefly discuss how these results may fit the different scenarios proposed to explain the variability of cool and ultracool dwarfs (i.e. magnetic spots, patchy obscuration by dust clouds, surrounding accretion discs and binarity). Additionally, we have determined tentative rotational periods in the range 3 to 40 h for three objects with masses around 60 M_Jup, and the rotational velocity of 14+/-4 km/s for one of them.Comment: Accepted for publication in A&
    • …
    corecore