252 research outputs found

    Unexpected understorey community development after 30 years in ancient and post-agricultural forests

    Get PDF
    1. Land-use change is considered one of the most radical and extensive disturbances that have influenced plant distributions and diversity patterns in forest understorey communities in much of Europe and eastern North America. In forests growing on former agricultural land, local species diversity and community differentiation among sites are generally reduced compared to ancient forests (i.e. forests with no historical record of agriculture). Yet, no study has determined how the compositional differences created by former land use change over time as the forest sites recover from former agricultural use. 2. Here we resurveyed 78 vegetation plots (half of the plots in ancient and half in post-agricultural forest) to demonstrate how three decades of forest development have changed the compositional differences between post-agricultural and ancient forest sites. The impact of land-use history and survey date was tested on two measures of species diversity and two measure of community divergence. 3. The data indicate that the imprint of former agricultural land use persisted over time, yet not through compositional stability. Parallel and strong vegetation shifts occurred in both ancient and post-agricultural forest: the species diversity decreased and local species cover strongly diverged, which indicates community drift. The observed understorey changes did thus not support the commonly accepted model of community development in post-agricultural forests, i.e. the diversity did not increase and the vegetation did not become more similar to the ancient forest vegetation over time. The changes in species composition were associated with an increase of common, competitive species at the expense of ancient forest indicator species. The source populations of ancient forest species have been gradually depleted, so the recovery of post-agricultural forests becomes even more precarious. 4. Synthesis. While land-use history is likely to persist as the primary predictor of local species diversity and community divergence, other environmental drivers may additionally structure forest understorey communities and lead to biotic impoverishment and pervasive species reordering on the time scale of only decades

    Tree regeneration responds more to shade casting by the overstorey and competition in the understorey than to abundance per se

    Get PDF
    Manipulating the overstorey is the key tool for forest managers to steer natural regeneration. Opening up the canopy does not only create favourable light conditions for tree seedling growth, but also for (competitive) understorey species. Therefore, a thorough understanding of how changes in the abundance of the overstorey and understorey influence tree regeneration is needed to attain successful regeneration. To this end, we used the regional Flemish Forest Inventories, which contain vegetation plots that were surveyed at two times and include large variation in species composition and abundance of both overstorey and understorey layers. These plots were classified into poor and rich forest types, which differ in overstorey and understorey species composition and soil fertility. For each forest type, we first investigated the effect of overstorey abundance and shade-casting ability on the understorey herbaceous vegetation cover and its competitive nature. Then, we modelled how both these strata influence the presence-absence as well as the cover of tree regeneration, using the zero-inflated beta distribution. Our results show that the understorey cover and its competitiveness mainly increase when the abundance and shade-casting ability of the overstorey is reduced. The shade-casting ability of the overstorey and competitiveness of the understorey were more important in determining tree regeneration, especially probability of presence, than the abundance of these layers per se. This was consistent for both forest types, although directions and magnitudes of the effects differed. In predictions mimicking several thinning scenarios we found that in the poor forests, reducing overstorey abundance could lead to an increase in seedling cover, whereas in rich forests, the opposite is true and seedling cover will potentially be reduced. Finally, in a single-species analysis focusing on Quercus, we found a trade-off between sufficiently reducing overstorey abundance, while at the same retaining parent trees as potential seed sources. These findings can be used to guide forest management decisions in order to attain successful forest regeneration in temperate forests

    Opbouw methodiek prijsbepaling hout

    No full text
    Os dados foram recolhidos e registados pelo técnico da ESACB João Nunes sob a supervisão da Prof.ª Maria do Carmo Horta Monteiro.Dados climáticos relativos ao ano de 1985, recolhidos e registados no Posto Meteorológico da Escola Superior Agrária do Instituto Politécnico de Castelo Branco

    Opbouw methodiek prijsbepaling hout

    Get PDF
    corecore