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Abstract 8 

Manipulating the overstorey is the key tool for forest managers to steer natural regeneration. Opening 9 

up the canopy does not only create favourable light conditions for tree seedling growth, but also for 10 

(competitive) understorey species. Therefore, a thorough understanding of how changes in the 11 

abundance of the overstorey and understorey influence tree regeneration is needed to attain 12 

successful regeneration. 13 

To this end, we used the regional Flemish Forest Inventories, which contain vegetation plots that were 14 

surveyed at two times and include large variation in species composition and abundance of both 15 

overstorey and understorey layers. These plots were classified into poor and rich forest types, which 16 

differ in overstorey and understorey species composition and soil fertility. For each forest type, we 17 

first investigated the effect of overstorey abundance and shade-casting ability on the understorey 18 

herbaceous vegetation cover and its competitive nature. Then, we modelled how both these strata 19 

influence the presence-absence as well as the cover of tree regeneration, using the zero-inflated beta 20 

distribution. 21 

Our results show that the understorey cover and its competitiveness mainly increase when the 22 

abundance and shade-casting ability of the overstorey is reduced. The shade-casting ability of the 23 

overstorey and competitiveness of the understorey were more important in determining tree 24 
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regeneration, especially probability of presence, than the abundance of these layers per se. This was 25 

consistent for both forest types, although directions and magnitudes of the effects differed. In 26 

predictions mimicking several thinning scenarios we found that in the poor forests, reducing 27 

overstorey abundance could lead to an increase in seedling cover, whereas in rich forests, the opposite 28 

is true and seedling cover will potentially be reduced. Finally, in a single-species analysis focusing on 29 

Quercus, we found a trade-off between sufficiently reducing overstorey abundance, while at the same 30 

retaining parent trees as potential seed sources. These findings can be used to guide forest 31 

management decisions in order to attain successful forest regeneration in temperate forests. 32 

Key-words: Forest inventory; herb layer; canopy; competition; forest management; natural 33 

regeneration; gap dynamics; forest renewal; logging 34 

1 Introduction 35 

Tree regeneration is of key importance in forest ecosystems, as it provides the next generation of 36 

overstorey (canopy) trees. During the past decades, a growing interest in a more extensive forest 37 

management based on natural processes, i.e. “close-to-nature management”, has arisen and in many 38 

places the dominant regeneration method is shifting from traditional planting to natural regeneration 39 

(Ammer et al., 2018; Puettmann et al., 2015). Natural regeneration is less cost-intensive and can 40 

provide other advantages such as a better adaptation to microhabitats or higher seedling densities, 41 

compared with artificial regeneration (Kolo et al., 2017). 42 

Changing overstorey cover and composition is the key tool for forest managers for controlling forest 43 

floor light availability and initialising natural tree regeneration (Schütz, 2004). If too much light reaches 44 

the forest floor, opportunistic, fast growing understorey species may start to compete strongly with 45 

tree seedlings for the available resources and reduce seedling survival or growth (Balandier et al., 46 

2006; Royo and Carson, 2006). However, under light limitation neither the vegetation nor the tree 47 

seedlings will be able to grow well (Pagès and Michalet, 2003). To be successful, optimal light 48 
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conditions need to be attained, so tree seedlings can establish and grow, but at the same time 49 

restricting excessive growth of understorey vegetation (Schütz, 2004; Wagner et al., 2011). Therefore, 50 

to attain this indirect facilitation (Pagès et al., 2003) and successful natural regeneration, we need a 51 

better understanding of how the overstorey influences tree regeneration directly, by reducing light, 52 

and indirectly through the response of the understorey vegetation. 53 

Experimental studies have shown negative effects of the presence of an understorey vs. without 54 

understorey (control) on tree regeneration survival, density and growth (e.g. George and Bazzaz, 55 

1999a, 1999b; Royo and Carson, 2008). There are fewer studies that also apply an overstorey 56 

treatment and this treatment then often covers only two grades of overstorey openness (e.g. shade 57 

vs. no shade; gap vs. no gap) (Pagès et al., 2003; Pagès and Michalet, 2003; Putnam and Reich, 2017). 58 

Repeated large-scale observational data, such as national or regional forest inventories, often cover 59 

large gradients of environmental conditions and can therefore provide valuable data for studying 60 

forest tree regeneration and its relations with environmental conditions. Most studies that have used 61 

inventory data to research tree regeneration are from Mediterranean forest, in which other factors, 62 

such as temperature stress and moisture availability play a more important role compared with 63 

temperate forests (e.g. Bravo et al., 2008; Monteiro-henriques and Fernandes, 2018; Vayreda et al., 64 

2013). Furthermore, only few studies have looked at the combined effects of both understorey and 65 

overstorey on tree regeneration (Plieninger et al., 2010; Shen and Nelson, 2018) and none of these 66 

studies explore the effects of the overstorey on understorey and regeneration together. 67 

In this study, we make use of the regional Forest Inventory of Flanders, the northern part of Belgium. 68 

This dataset contains temperate forest vegetation plots, which were surveyed two times, with an 69 

intercensus interval of 10-20 years. The dataset includes large variation in species composition and 70 

abundance of both overstorey and understorey layers, allowing to test the effect of both these forest 71 

layers on tree regeneration and the consistency of these effects over time. In all analyses, we 72 

discriminated between plots in forests on soils with low nutrient availability, i.e. poor forests, and 73 
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plots on more fertile soils, i.e. rich forests. We modelled the relationship between overstorey 74 

(abundance and shade-casting ability) and understorey herbaceous vegetation (cover and competitive 75 

signature), and then quantify how changes in these two forest layers influence tree seedling cover. 76 

First, we looked at regeneration across multiple species, i.e. grouping the most frequent species per 77 

forest type, and then zoomed to the level of an individual tree species and quantified effects for 78 

Quercus spp., the most frequent and economically important tree species in the study region. Finally, 79 

to better understand the implications of our results for the management of tree regeneration, we 80 

predicted changes in tree seedling cover for different thinning scenario’s reducing the overstorey. We 81 

hypothesise that (i) a higher abundance and shade-casting ability of the overstorey layer will lead to 82 

lower cover and reduced competitiveness of the understorey herbaceous vegetation by reducing light 83 

availability at the forest floor, (ii) increasing abundance of both over- and understorey as well as 84 

increasing competitive (light-reducing) nature of these layers will result in reduced cover of tree 85 

seedlings, however, (iii) overstoreys might indirectly affect tree regeneration by reducing understorey 86 

growth and thus reducing competition on the forest floor. We evaluated the consistency of our three 87 

hypotheses for the poor vs. rich forest types. 88 

2 Material & Methods 89 

2.1 Regional forest inventory data 90 

For this study, we used data from the first and second Flemish Forest Inventory (FFI; Wouters et al., 91 

2008). The FFIs contain data on forest vegetation plots spread across Flanders, i.e. the northern part 92 

of Belgium (Fig. 1). Mean annual temperature and precipitation for this region are 10.5 °C and 852 93 

mm, respectively. Flanders has a forest surface area of approximately 146 000 ha (11% of the total 94 

area). Forest in Flanders cover a large range in forest and soil types from nutrient poor oak-pine forests 95 

on sandy soils to ash-alder on moist, rich loamy soils. For the first FFI, vegetation plots (16 m x 16 m) 96 

were systematically selected by laying a 1 km x 1 km grid over the Flemish forest mapping (1978 – 97 

1990). All plots were sampled for the first time during 1997 – 1999 (n = 1383). For the second FFI, the 98 
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Agency for Nature and Forest (ANF) shifted from a periodic (a short measuring campaign every ten 99 

years) to a continuous inventory (every year one tenth of the sampling population is measured). The 100 

plots in the second FFI were revisited between 2009 – 2017. We selected the plots which were 101 

surveyed during both inventory campaigns using the exact same location (n = 394); due to changes in 102 

the sampling strategy, the location of multiple plots were changed for the second FFI and thus were 103 

not suitable for this study. Based on the vegetation composition observed during the first FFI, the 104 

temporally paired plots were classified into different forest type groups following Cornelis et al. 105 

(2009). We split up the plots into vegetation types ‘typically found on nutrient poor soil’ (oak-beech 106 

and oak-pine forests; referred to as “poor plots”) and vegetation types ‘generally found on nutrient 107 

rich soils’ (ash-oak, ash-alder and elm-ash forest; referred to as “rich plots”). A total of 304 poor and 108 

69 rich plot-pairs were retained (Fig. 1). Remaining plots (n = 24) were unassigned as they were 109 

situated on very wet soils, e.g. alder swamp, birch-alder and alluvial willow forests, or in calcareous 110 

sycamore-ash forest (as classified by Cornelis et al., 2009). Plots in both forest types were primarily 111 

situated in even-aged forest (only 5% was uneven-aged) and stand age was on average 55 years in all 112 

the plots with only a minor proportion younger than 20 years. The FFI vegetation plot data contains 113 

detailed information on the cover of all plant species per plot in the understorey (non-woody and 114 

woody plants < 0.5 m, incl. seedlings), the shrub layer (woody plants ≥ 0.5 m and < 6 m), and the tree 115 

layer (woody plants ≥ 6 m). The cover class of each species in every layer was estimated using the 116 

transformed Braun-Blanquet scale based van der Maarel (1979) (Table A1). 117 

2.2  Tree seedling species 118 

The tree seedling selection was based on the data of the selected poor and rich forest plots. The most 119 

frequent and silviculturally important native tree species were selected per forest type (Table A2). 120 

These very young seedlings are < 0.5 m and have therefore not yet overgrown the understorey layer. 121 

For the poor forest types, Quercus robur and petraea were grouped as Quercus (number of plots in 122 

which regeneration is present in at least one survey n = 242); Betula pendula, pubescens and spp. were 123 

grouped as Betula (n = 126); Fagus sylvatica, Pinus sylvestris and Acer pseudoplatanus will be refered 124 
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to as Fagus (n = 42), Pinus (n=85) and Acer (n = 58), respectively. For the rich forest type, Quercus 125 

robur and petraea were grouped as Quercus (n =44); Fraxinus excelsior (n = 35), Acer pseudoplatanus 126 

(n = 27) and Prunus avium (n = 22) will also be referred to by their genus. Quercus seedlings were most 127 

frequently present of all these tree species in both forest types and is the economically most important 128 

species in the study region. Therefore, we used Quercus as a study species in an individual species 129 

analysis (see below). We used the cover of the seedlings in the vegetation surveys as a measure of 130 

abundance, i.e. as an alternative to densities. Visually estimated cover of understorey plants has been 131 

shown to predict biomass well (Axmanová et al., 2012) and the Braun-Blanquet cover-abundance scale 132 

used for the surveys actually combines densities with cover in the lower classes (Table A1). Some basic 133 

descriptors of the tree seedling data showed that the cover of the selected species was on average 134 

higher in the rich forest plots during the first survey (Table 1). Furthermore, the cover-weighted 135 

average shade tolerance per plot based on the species-specific shade tolerance indices of the selected 136 

tree species (Niinemets and Valladares, 2006) showed higher average seedling shade tolerance in the 137 

rich than in the poor forest plots, both in the past and the recent survey (Table 1). 138 

2.3 Environmental characteristics in the poor and rich forest plots 139 

We calculated variables related to overstorey, understorey and soil to describe the prevailing 140 

environmental conditions in the poor and rich plots. 141 

To characterise the overstorey conditions and light availability in each plot we calculated two 142 

measures of abundance: (1) total sum of cover of all species in tree and shrub layer; (2) total basal 143 

area of all trees with height more than 2 m. The total basal area was not derived from the earlier 144 

described 16 m x 16 m vegetation plots, but was derived from dendrometric measurements from 145 

concentric nested circular plots  (max. radius of 18 m; see Wouters et al., 2008). We also derived the 146 

average shade-casting ability (SCA), i.e. a weighted average (by total cover or total basal area) of the 147 

species-specific shade-casting indices that range from 1 (low) to 6 (high ability to cast shade of mature 148 

trees when growing in a monospecific stand) (Table A3; see also Baeten et al., 2009; Van Calster et al., 149 
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2008; Verheyen et al., 2012). In the single-species models for Quercus, we added a predictor variable 150 

‘parent tree’, that is, the sum of cover or total basal area of Quercus trees in the stand, to account for 151 

the potential seed availability (see 2.4.2). 152 

The sum of cover of the understorey vegetation (tree/shrub species excluded) was calculated from 153 

species-specific cover values and has been shown to be a good predictor for the total forest 154 

understorey biomass (Axmanová et al., 2012). Furthermore, we calculated the CSR functional 155 

signature for each plot following Hunt et al. (2004). These functional signatures give for the present 156 

vegetation in a plot the proportion of competitive, stress-tolerant and ruderal signatures. These values 157 

were derived from the nineteen possible functional types distinguished in the CSR-triangle (Grime, 158 

2001) and their standard triangular coordinates, which were weighted by species cover. In our study, 159 

we use the competitive signature of the community (C-score), as understorey communities with this 160 

signature are dominated by acquisitive species which have the ability to rapidly colonize forest gaps 161 

or more open forest and have high potential to compete for light with the tree seedlings. 162 

As proxies of the prevailing plot-specific soil properties, we calculated cover-weighted mean Ellenberg 163 

indicator values using the individual species’ indicator values (tree/shrub species excluded) for soil 164 

fertility (EIVN), soil reaction (EIVR) and soil moisture (EIVF) (Diekmann, 2003; Ellenberg et al., 2001). 165 

Additionally, we calculated the average litter quality (LQ), which can be interpreted as a proxy for 166 

nutrient cycling and availability, as a weighted average of litter quality indices of individual overstorey 167 

species (Table A3) (see also Baeten et al., 2009; Van Calster et al., 2008; Verheyen et al., 2012). 168 

There is a clear distinction in site conditions between the rich and poor forest types (Table 1). Even 169 

though they are on average equally dense, overstoreys in rich forest have a higher SCA than in poor 170 

forests. Understoreys in the rich forest plots also have a much higher total cover and have a higher 171 

competitive score (C-score) in the first survey than in the poor forest plots. The average Ellenberg 172 

indicator values for soil fertility (EIVN) and soil reaction (EIVR) indicate that soils in rich forest types are 173 

more productive and have higher base saturation. Rich forest plots have a higher share of species with 174 
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easier decomposing leaf litter in the overstorey than the poor plots, indicating a higher nutrient 175 

turnover and availability. Between the two surveys, both the abundance of the overstorey (total basal 176 

area and cover), as well as the cover of the understorey increased in the two forest types (Table 1). 177 

The cover of the selected tree seedling species only increased in the poor plots. Finally, in the poor 178 

forests, values for EIVN and EIVR increased, indicating increases in soil nutrient availability and base 179 

saturation (Table 1).  180 

2.4 Data analysis 181 

2.4.1 Modelling understorey variables 182 

To test the first hypothesis, we analysed the effect of the overstorey on the understorey vegetation. 183 

We used variables related to the abundance and competitiveness of both the overstorey, i.e. total 184 

basal area and SCA, as well as the understorey layer, i.e. sum of cover and C-score, respectively. We 185 

separated between abundance and competitiveness because even though two plots can have a similar 186 

total basal area, the overstorey may be composed of different species with varying abilities to cast 187 

shade, resulting in different light levels at the forest floor. Similarly, understoreys may have 188 

comparable cover, but may differ in their ability to compete for resources with the tree regeneration. 189 

The variables related to soil conditions (EIV) and nutrient turnover (LQ) were used to characterise the 190 

two forest types and are no longer considered in our models. Using linear multilevel models, we 191 

modelled the understorey cover in response to the overstorey total basal area and SCA as fixed effects 192 

(Model 1). We also added the predictor ‘Survey’ (levels for each survey time FFI1 and FFI2) as a fixed 193 

effect to model the time-effect and accounted for the fact that each plot was surveyed two times by 194 

adding ‘Plot’ to the model as a random intercept. Additionally, we added the interactions of the other 195 

two fixed effects with survey to the model, capturing how (and if) the change between surveys 196 

depends on the predictors. A similar model was built for the understorey C-score as the response 197 

(Model 2). Both these understorey variables were modelled using a Gaussian distribution, which was 198 

truncated at zero for understorey cover. For formula notation of these models we refer to Appendix 199 
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B. We also modelled these relations (and those in part 2.4.2) using overstorey cover and the SCA 200 

weighted by cover, instead of total basal area; these results are included in the Appendix (Fig. A2). All 201 

our model analyses were performed for poor and rich forest types separately. To detect possible 202 

multicollinearity between the different predictor variables, variance inflation factors (VIF) were 203 

calculated (Zuur et al., 2009). These VIF values were negligible (< 3), indicating low collinearity. All 204 

explanatory variables were standardized (subtracting the sample mean and dividing by the standard 205 

deviation) prior to the modelling. 206 

2.4.2 Modelling tree seedling cover 207 

The second hypothesis was tested by modelling total tree seedling cover in response to total basal 208 

area and SCA of the overstorey, as well as the sum of cover and C-score of the understorey. For this 209 

analysis, we summed the cover of the selected tree seedling species per forest type as frequency for 210 

single species was low (except for Quercus in the poor plots). This sum of cover also approximates a 211 

continuous distribution. Visually estimated plant cover data, which is typically zero-inflated, is often 212 

analysed using standard statistical methods (e.g. classical linear regression), which has important 213 

drawbacks (Damgaard, 2009). Therefore, we applied a multilevel modelling approach using the zero-214 

inflated beta distribution to model the visually estimated tree seedling cover data (e.g. Damgaard, 215 

2014, 2009; Herpigny and Gosselin, 2015; Irvine et al., 2016). This flexible distribution first models the 216 

probability of absence (zero-inflation part ZI) and then models the rest of the data with a beta-217 

distribution, i.e. the cover conditional on a tree seedling being present (Ospina and Ferrari, 2010). For 218 

both the beta part and the zero-inflated part, the logit link function was used, whereas for the 219 

precision parameter, the log link function was used. The model structure for total seedling cover was 220 

the same as for Model 1 and 2, but here we also added understorey cover and C-score as fixed effects, 221 

and their interactions with survey (Model 3). The same model structure (Fig. A1) was used for both 222 

the ZI and the beta part of the model, so that the effect of these variables on the unconditional overall 223 

cover (which is the probability of presence times the conditional cover) can be modelled. 224 



10 
 

Additionally, we model the presence-absence and cover of the seedlings for a single species (Quercus) 225 

using the same structure as Model 3, but added an extra explanatory variable ‘parent tree’, which is 226 

the basal area of conspecific Quercus in the overstorey, and the interaction with survey to both the 227 

zero-inflation and the beta part of the model. Due to the low frequencies of the other species selected 228 

for the previous grouped analyses, single-species models did not converge and could thus not be 229 

included in this study. The measurement scale of cover values for a single species is a discretised 230 

continuous scale as the Braun-Blanquet cover-abundance scale was used in the inventories (Table A1). 231 

This type of data is interval-censored, which means that values are only known to lie within a certain 232 

interval (not exact), in this case the asymmetric Braun-Blanquet cover classes. For this reason, an 233 

interval-censored model was applied to take into account the distribution of this data in cover classes 234 

(Damgaard, 2014, 2009; Herpigny and Gosselin, 2015; Irvine et al., 2016; Pescott et al., 2016). 235 

All models were fitted with the probabilistic programming language Stan through the brms package 236 

with R version 3.5.0 (Bürkner, 2017; R Core Team, 2018). We used the default priors for these 237 

multilevel models and ran four chains of a thousand iterations each, after a warm-up of one thousand 238 

iterations. Convergence and mixing of chains was inspected visually using the bayesplot package 239 

(Gabry and Mahr, 2018). We present posterior means as well as 80 and 95% credible intervals (CI) for 240 

relevant model parameters. A Bayesian equivalent for R² was calculated for all models using the 241 

bayes_R2 function (Gelman et al., 2017). We calculated R² variables for the variance explained by the 242 

fixed effects only, i.e. R²Marginal, and for the variance explained by both fixed and random effects, i.e. 243 

R²Conditional  (sensu Nakagawa and Schielzeth, 2013). 244 

2.4.3 Predicting regeneration in thinning scenarios 245 

To understand and illustrate the implications of our results in terms of management-related changes 246 

in the overstorey, we predict changes in total tree seedling cover for different thinning scenarios. The 247 

same scenarios were predicted for total seedling cover in poor forest, rich forest and for Quercus as a 248 

single species. 249 
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First, we predicted the understorey cover and C-score for a mature forest plot with a dense overstorey 250 

in the initial inventory (survey = 1) with a starting total basal area of 35 m²/ha, composed of 50% 251 

Quercus and 50% Fagus, making the SCA 4.5 (Table A3). All predictions were made only considering 252 

fixed effects. Hereto, we used the fitted models 1 and 2 and drew 1000 posterior samples to generate 253 

1000 predictions of understorey cover and C-score. Then, we used these understorey predictions, 254 

together with the same total basal area (35 m²/ha) and SCA (4.5) to predict total tree seedling cover, 255 

using the fitted model 3. We also drew 1000 posterior samples to generate 1000 predictions of tree 256 

seedling cover. Note that this approach accounts for the uncertainty of the understorey predictions 257 

(1000 samples) in the predictions of seedling cover. We report the median total tree seedling cover, 258 

80 and 95 % prediction intervals (PI). Second, we simulated different thinning scenarios. In a first set 259 

of scenarios, we simulate thinning cuts by removing similar proportions of Quercus and Fagus 260 

(resulting in no change in SCA) in this plot by subsequently reducing the total basal area to 25, 15 and 261 

5 m². In the second set of scenario’s, the same reductions in total basal area was assumed, but now 262 

only Fagus overstorey trees are removed so that SCA is reduced to 3. Similar steps were followed to 263 

make these predictions as was done for the initial situation, using the model fits for the second survey 264 

of the inventory data (survey = 2). This means we predict how tree seedling cover may develop in 265 

future scenario’s, using observed patterns between the surveys, assuming that the changes that have 266 

taken place over time have been gradual and directional and will be similar for the future. We also 267 

predicted the response of Quercus only, starting from the same initial conditions and for the same 268 

scenarios using fits from the single-species model. For the scenario where the same proportion of 269 

overstorey Quercus and Fagus trees are cut (SCA remains the same), the parent tree basal area starts 270 

from 17.5 and is reduced to 12.5, 7.5 and 2.5 m²/ha. When only Fagus is cut (SCA reduced to 3), parent 271 

tree basal area is reduced to 17.5, 15 and 5 m²/ha. 272 
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3 Results 273 

3.1 Effect of overstorey on the understorey community 274 

For the poor plots, we found negative effects of total basal area and SCA on understorey cover (Fig. 275 

2a, c; Fig. A1). This means, for instance, that reducing total basal area from 35 to 15 m²/ha or a 276 

reduction in SCA from 4.5 to 3 (see also predictions in part 3.3) in the first survey, leads to an increase 277 

in understorey cover with 16% (95% CI = [9.10, 24.11]) and 10% (95% CI = [7.12, 12.89]), respectively. 278 

The SCA had a small positive effect on the C-score of the understorey in the first survey, but not in the 279 

second (negative interaction effect between SCA and Survey; Fig. 3c; Fig. A1). Reducing SCA from 4.5 280 

to 3 in the first survey, leads to a reduction of C-score of 0.05 (95% CI = [0.02, 0.08]). 281 

For the rich plots, we found a negative relationship between the SCA and the understorey cover and 282 

the C-score (Fig. 2d and 3d; Fig. A1). Reducing SCA from 4.5 to 3 in the first survey, leads to an increase 283 

in understorey cover with 37% (95% CI = [6.42, 67.06]) and an increase in C-score of 0.16 (95% CI = 284 

[0.06, 0.25]). Similar results were found for the models using overstorey cover; these are included in 285 

the appendix (Fig. A2). 286 

3.2 Effects of overstorey and understorey communities on tree seedlings 287 

For the poor plots, we found a negative effect of total basal area on the unconditional overall tree 288 

seedling cover for the second survey, but not the first (Fig. 4a). When looking at the 95% CI intervals 289 

there were no clear effects for both ZI and beta parts for total basal area (Fig. A1). Reduction of total 290 

basal area from 35 to 15 in the recent survey leads to a small increase of unconditional seedling cover 291 

of 0.67% ([0.31, 1.1]). SCA had a positive effect on the unconditional cover for the second survey 292 

period only (Fig. 4c). This relationship results from a negative effect of SCA on probability of presence 293 

(ZI part), but more importantly, the interaction between SCA and the survey period found for the 294 

conditional cover (beta part; Fig. A1). A reduction in SCA from 4.5 to 3 for the recent survey results in 295 

a decrease of 0.47% (95% CI = [0.11, 0.88]) of unconditional cover. The competitive signature of the 296 
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understorey (C-score), however, did affect tree seedling cover (Fig. 4g). A negative effect is found for 297 

the unconditional cover with increasing C-score (Fig. 4g) due to the negative effect on the presence of 298 

seedlings (Fig. A1). An increase in C-score from 0.5 to 0.75 leads to reduction of unconditional cover 299 

of 0.41% (95% CI = [0.09, 0.73]) in the recent survey. 300 

For the rich plots, we found a negative non-linear relation between C-score and the unconditional 301 

tree seedling cover (Fig. 4h). This effect was largely due to the negative effect of C-score on the 302 

presence of seedlings (ZI part; Fig. A1).  An increase in C-score from 0.50 to 0.75 results in an average 303 

decrease in seedling cover of 2.2% (95% CI = [0.43, 4.2]) in the recent survey. Probability of presence 304 

however decreases with 45% (95% CI = [9.39, 85.09]) for this change in C-score. The interaction 305 

between SCA and the survey period was different from zero for the ZI part, resulting in a positive trend 306 

for SCA in the first period and a negative in the second survey period (Fig. A1). 307 

For the single-species model with Quercus, we found that SCA had a clear negative effect on the 308 

unconditional cover of Quercus, this due to the negative effect of SCA on the probability of presence 309 

of Quercus seedlings (Fig. 5a; Fig. A1). For a reduction in SCA from 4.5 to 3, unconditional cover 310 

increases with 0.27% (95% CI = [0.14, 0.37]) and probability of presence increases with 24% (95% CI = 311 

[15, 32]). The total basal area of Quercus overstorey trees, i.e. parent trees, had a positive effect on 312 

the unconditional cover (Fig. 5d). This was mainly due to the positive effect of this variable on the 313 

probability of presence (Fig. A2). Reducing the basal area of Quercus overstorey trees from 35 to 15 314 

results in a decrease in Quercus seedling cover with 0.56% (95% CI = [0.16, 1]) and probability of 315 

presence decreases with 17% (95% CI = [0.74, 28]). The total basal area of the overstorey did not 316 

clearly affect the unconditional cover of Quercus seedlings (Fig. 5), but had a negative effect on the 317 

probability of presence (Fig. A1). Reducing total basal area of the overstorey from 35 to 15 leads to an 318 

increase in probability of presence on average by 6.4%, but could also lead to an increase in the recent 319 

survey (95% CI = [-21, 7.5]). 320 
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3.3 Predicting regeneration scenarios 321 

Tree seedling cover responded differently in the two forest types and for single species Quercus when 322 

simulating various regeneration cuttings (Fig. 6). In addition to the predictions, we tested for potential 323 

lag effects of the different predictors on the responses used in our analyses (understorey cover, C-324 

score and tree seedling cover; see Appendix C). We did not find any evidence for lag effects. When 325 

starting from a poor forest stand with total basal area of 35 m2 and a SCA of 4.5 (Fig. 6a; red 326 

prediction), results show that tree seedling cover is likely to increase when reducing overstorey basal 327 

area (for each predicted level) by removing the same proportion of each tree species (i.e. SCA remains 328 

the same; 80% PI differ from zero and do not overlap for the predictions; Fig. 6a; blue predictions). 329 

This increase is mainly caused by the direct effect of the decrease in basal area and by the survey 330 

component in model 3, i.e. change in cover independent of the other predictors. When the same 331 

decrease in basal area is realised by removing shade-casting species (i.e. SCA decreases), tree seedling 332 

cover is also likely to increase (Fig. 6a; green predictions). In this situation however, the increase will 333 

be smaller due to the reduction in SCA, resulting from the change in the relation between conditional 334 

tree seedlings cover and SCA in the second survey period. 335 

When making predictions for the same scenarios in the rich forest plots, we see a negative trend when 336 

opening up the overstorey, accompanied by large uncertainties (Fig. 6b). This trend is mainly caused 337 

by the increase in understorey cover over time, causing a decrease in seedling cover. When the SCA is 338 

reduced by selective cutting, tree seedling cover is even more likely to decrease (Fig. 6b; green 339 

predictions). This is due to the indirect effects of decreasing SCA, which causes understorey cover to 340 

increase, as well as the competitive signature, which both have negative effects on tree seedling cover. 341 

The predictions for the single species Quercus show a less clear pattern (Fig. 6c). Changes in Quercus 342 

seedling cover are due to a combination of variables. Reducing total basal area has a positive effect, 343 

but if Quercus overstorey trees are cut, this will lead to a lower cover of Quercus seedlings. Reducing 344 

SCA leads to an increase in mean Quercus seedling cover. Understorey cover increased slightly in 345 
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response to reducing basal area and SCA which had a small positive effect on Quercus seedling cover. 346 

These predictions were accompanied by large uncertainties; none of the PI differed from zero. 347 

4 Discussion 348 

Initialising natural regeneration by manipulation of the overstorey requires thorough knowledge of 349 

how understorey plant communities and tree seedlings will respond. Using data from the regional 350 

Flemish Forest inventory, our results show that understorey plant cover and its competitive signature 351 

were mainly negatively affected by the abundance and SCA of the overstorey. Furthermore, we found 352 

evidence that the signatures of the overstorey (SCA) and understorey (C-score) were more important 353 

in determining tree regeneration, than the abundance of these layers per se. We made predictions to 354 

illustrate practical implications of our findings and we found that in poor forest types, opening up the 355 

overstorey can potentially lead to increased seedling cover, whereas in rich forests this might result 356 

in a decrease. Below we discuss these findings and their implications for forest management in more 357 

depth. 358 

Overstorey abundance, both total basal area and total cover, as well as its ability to cast shade were 359 

found to have negative effects on the understorey cover in both forest types. These relationship are 360 

as we expected as understorey biomass production in forests mainly limited by light availability (e.g. 361 

Axmanová et al., 2011), which is controlled by the overstorey abundance and its structure (Barbier et 362 

al., 2008; Wagner et al., 2011). The competitive signature was not clearly affected by the abundance 363 

of the overstorey, but was influenced by its SCA. In the rich plots, changes toward overstorey species 364 

with higher SCA (late successional species) lead to a decrease in proportion of competitive 365 

understorey species. In the poor forest type, however, the impact of overstorey abundance on the 366 

competitive signature was less apparent and even slightly positive, contrary to what one might expect. 367 

This effect is likely due to a gradient from forests on extremely poor, sandy soils (dominated by Pinus) 368 

to forests on soils with a higher loam content with a higher proportion of trees with higher SCA (e.g. 369 

Quercus or Fagus) in which understorey competition levels are known to be higher (Honnay et al., 370 
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2002; Willoughby et al., 2009). These results show that the retention of the overstorey and selection 371 

for higher shade-casting species can reduce understorey biomass, in both poor as well as rich forest 372 

types, and supress competitive species in rich forest types. 373 

Both the overstorey and understorey community influenced tree regeneration in our study area. We 374 

found that not the abundance of these layers per se, but their composition were more important in 375 

determining tree regeneration. In temperate forest, overstorey abundance is expected to have 376 

negative direct effects on tree regeneration by reducing light availability (Busing, 1994; Klopcic and 377 

Boncina, 2012; Nilsson et al., 2002). In the poor forest plots, the probability that tree seedlings were 378 

present was reduced with increasing proportion of overstorey species that cast deep shade (e.g. 379 

Fagus) and total basal area had a negative effect on unconditional seedling cover despite not affecting 380 

the probability of presence or conditional cover clearly. Surprisingly, we found a positive relationship 381 

between SCA and tree seedling cover for the second survey period. This may also be due to the 382 

gradient in soil conditions in the poor forest plots (see earlier). In the rich plots, our models also 383 

showed opposite effects of SCA on probability of presence in each survey, however, with large 384 

uncertainties. The different effects in the two forest types and the absence of clear overstorey effects 385 

on seedling cover may be due to the fact that the studied seedling species were more tolerant to 386 

shade in the rich forest plots. These relationships imply that forest managers should be careful when 387 

selectively removing or retaining overstorey trees, as changing the composition of the overstorey may 388 

have direct consequences for tree regeneration. Similarly, our results show that when managing 389 

understorey vegetation to improve regeneration, it is also important to take the composition into 390 

account. Many studies have shown that understorey vegetation in temperate forest can strongly 391 

reduce tree seedling regeneration (Balandier et al., 2006; George and Bazzaz, 1999a, 1999b; Royo and 392 

Carson, 2008). In our study, we found that an increasing proportion of competitive understorey 393 

species (sensu Grime, 2001) resulted in lower probability of presence for tree seedlings in both poor 394 

and rich forest types. Due to this strong effect on probability of presence, unconditional total cover is 395 

also negatively influenced by the competitive signature. This suggests that control of the understorey 396 
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vegetation to promote tree regeneration will be most effective when applied in communities with a 397 

high competitive signature and not just high cover. Our findings provide further insight in how 398 

understoreys may affect tree regeneration, which is not only of relevance for forest managers, but 399 

also for forest modellers, as it has been shown that interactions between the herbaceous layer and 400 

tree regeneration significantly affect the projections of forest structure and composition at large time 401 

scales (decades to centuries) (e.g. Landuyt et al., 2018; Thrippleton et al., 2016). 402 

The fact that we did not find clear effects for total basal area and total understorey cover on both tree 403 

seedling probability of presence and conditional cover in neither forest types was unexpected. This 404 

may be because (i) there are simply no effects, (ii) these factors do not have unidirectional effects on 405 

tree regeneration and can imply a complex balance of positive (facilitation) and negative (competition) 406 

effects (Callaway and Walker, 1997; Putnam and Reich, 2017) under different conditions which are 407 

difficult to detect and (iii) this might a result of pooling different tree seedling species for analysis. Due 408 

to insufficient data points to analyse all tree seedling species separately, we were restricted in our 409 

analysis to pooled seedling cover per forest types and the single-species analysis of Quercus using the 410 

poor forest plots. This pooling of species with different traits such as shade-tolerance (Niinemets and 411 

Valladares, 2006), may obscure and cancel out effects: e.g. the 80% CI for understorey cover for the 412 

ZI part differs from zero and suggests a negative relation between understory cover and tree seedling 413 

presence-absence. The lack of clear overstorey effects on seedlings in rich forest plots can, however, 414 

be explained by their shade-tolerant nature. Nonetheless, our results give valuable insights in how 415 

cover of the most important seedling species is driven by overstorey and understorey using inventory 416 

data in our study area (see also Kolo et al., 2017; Vayreda et al., 2013). 417 

The single-species model shows that Quercus seedling occurrence is mainly influenced by overstorey 418 

variables. Interestingly, both total basal area and SCA decreased occurrence, whereas increasing 419 

abundance of conspecific trees, i.e. a proxy for seed sources, had a positive effect. This concurs with 420 

Klopcic and Boncina (2012), who also found this relationship for total basal area and basal area of 421 
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parent trees for seedlings of silver fir, sycamore, Norway spruce and European beech in Slovenia. 422 

Monteiro-henriques and Fernandes (2018) also report positive effects of presence of conspecific 423 

parent trees for several Quercus taxa including Quercus robur in forests in Portugal. The magnitude of 424 

the effects on Quercus cover were small and mainly determined by the zero-inflation part of the model 425 

and were thus affecting presence-absence of seedlings. We believe, however, that a change from for 426 

example 1% to 0% cover, i.e. absence of Quercus regeneration, is an important; indeed it shows a 427 

difference between regeneration presence and failure. Our results suggest that in order to promote 428 

Quercus regeneration, thinning of heterospecific trees and retaining potential seed trees can prove to 429 

be a successful measure. 430 

Between surveys, the total cover of the understorey increased in both forest types and the tree 431 

seedling cover increased in the poor forests, independently of the predictors used in our models. 432 

These increases may be due to other local- or large-scale drivers not included in this study that have 433 

been reported as important for understorey and tree regeneration dynamics. Browsing by large 434 

herbivores is often reported as a strong determinant of tree regeneration, by directly inflicting damage 435 

to tree seedlings or indirectly by altering understoreys (Kirby, 2001; Kuijper et al., 2010; Royo and 436 

Carson, 2006). In our study area, densities of herbivores are not problematic compared to other 437 

regions. However, as herbivore densities have been increasing across Europe the past decades (Fuller 438 

and Gill, 2001; Milner et al., 2006), this may also become a more prominent driver of tree regeneration 439 

in Flanders. Changes in large-scale drivers such as climate change and nitrogen depositions may affect 440 

forests in Flanders. Global warming may already have affected tree regeneration over the past 441 

decades. The average temperature in Belgium is now +2.3 °C higher than in the pre-industrial age (end 442 

19th century) (“https://www.klimaat.be/”, 2019). Together with increased nitrogen inputs through 443 

atmospheric depositions these changes may lead to changes in tree seedling recruitment and growth 444 

(Fisichelli et al., 2014, 2012; Wheeler et al., 2017). Such effects are hard to detect in our study area 445 

due to their large scale. Furthermore, forest understorey plant responses, including tree seedlings’, to 446 

macroclimatic changes (climate or N dep) may be buffered in forests and effects may vary depending 447 
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on microclimatic conditions created by e.g. overstoreys (De Frenne et al., 2013; Verheyen et al., 2012; 448 

Zellweger et al., 2018). Including such drivers could improve the amount of variability explained in our 449 

models. 450 

The simulations of regeneration cuttings based on our models show contrasting results for poor and 451 

rich forest types. Our predictions are accompanied with large uncertainties originating from both the 452 

variation introduced when predicting the impact of the overstorey on the understorey vegetation as 453 

well as the variation in the prediction of tree regeneration responses to overstorey and understorey 454 

variables. For the poor forests, we found that, starting from a mature stand, sufficiently thinning the 455 

overstorey can promote tree regeneration. Based on our findings, tree regeneration is likely to profit 456 

more from the increased light when opening up the overstorey than it will suffer negative effects from 457 

the denser understorey cover that is likely to develop. Pages et al. (2003) and Pages and Michalet 458 

(2003) found similar trends for regeneration of multiple temperate tree seedlings in their experiments 459 

in forests on mesic soils. Other studies, however, have shown that under nutrient poor site conditions 460 

when increasing light availability, belowground competition for soil resources (nutrients, water) can 461 

become more important than aboveground competition for light (Balandier et al., 2006; Provendier 462 

and Balandier, 2008). For the same scenarios in rich forest, we found that tree regeneration is hardly 463 

present initially and is likely to decrease to zero cover when opening up the overstorey. In such cases, 464 

selectively controlling competitive understorey vegetation or supplementary artificial regeneration 465 

(through planting) may be advised (Nilsson et al., 2002; Shen and Nelson, 2018). The predictions for 466 

Quercus again suggest that stimulating seedling cover can be a compromise between reducing 467 

overstorey abundance and retaining sufficient parent trees as potential seed sources. However, we 468 

should be cautious in drawing conclusions from these predictions, as they are accompanied by large 469 

uncertainties and do not show a clear trend. 470 

To attain successful natural regeneration, a good understanding of how environmental factors 471 

influence tree seedlings is needed. Past research has shown that both overstoreys and understoreys 472 
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can have strong impacts on tree regeneration and intervening in these layers is key for managers to 473 

stimulate tree regeneration. In our study, we found that retaining overstorey trees can potentially 474 

reduce the cover of the understorey. The signature of both forest layers, i.e. C-score and shade-casting 475 

ability, turned out to be most determining for tree regeneration, mostly by influencing seedling 476 

probability of presence. Similar variables affect tree regeneration in both forest types, but the 477 

direction and magnitude of the effects varied. These results imply that selective management of 478 

shade-casting species and not just reducing or retaining abundance of both layer may prove successful 479 

in promoting natural regeneration in temperate forests.480 
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Tables 488 

Table 1. Differences in overstorey, understorey, tree seedling and environmental variables between the two forest types per survey (Poor vs. Rich). Poor and 489 
rich forest types refer to both soil fertility and species composition. The last two columns tests the significance of differences between surveys per forest type 490 
(FFI vs. FFI2). Comparisons were tested with T-tests (paired for comparisons between surveys). 491 
 492 

Survey FFI1   FFI2   FFI1 vs. FFI2  

Forest type Poor Rich Poor vs. Rich Poor Rich Poor vs. Rich Poor Rich 

 Mean [SD] Mean [SD] Statistic Mean [SD] Mean [SD] Statistic Statistic Statistic 

Overstorey         

Total basal area (m²/ha) 27.6 [10.9] 25.4 [11.2] 1.5NS 32.2 [11.9] 32.4 [11.4] -0.1NS -5*** -3.7*** 

Overstorey cover (%) 112.6 [38.9] 118 [46.2] -0.9NS 152.7 [49.8] 141.7 [56.5] 1.5NS -11.1*** -2.7** 

SCA basal area 2.7 [1] 3.5 [0.7] -7.4*** 2.8 [1] 3.6 [0.7] -8*** -0.6NS -0.9NS 

SCA cover 2.9 [1] 3.6 [0.7] -7.6*** 3 [1] 3.7 [0.7] -7.5*** -1.5NS -0.8NS 

Understorey         

Understorey cover (%) 43.9 [39.9] 102.4 [50.1] -9.2*** 60.5 [45.3] 129.7 [76.9] -7.3*** -4.8*** -2.5* 

C-score 0.46 [0.16] 0.54 [0.23] -2.6* 0.47 [0.14] 0.50 [0.21] -1.2NS -0.4NS 1.1NS 

S-score 0.47 [0.18] 0.27 [0.18] 8.4*** 0.47 [0.13] 0.30 [0.16] 8.5*** -0.3NS -1NS 

R-score 0.07 [0.11] 0.20 [0.14] -6.9*** 0.06 [0.08] 0.21 [0.15] -7.9*** 1.2NS -0.4NS 

Tree seedlings         

Total seedling cover (%) 1.2 [1.2] 2.1 [3.6] -2.1* 1.8 [2.3] 3.8 [9.7] -1.8NS -4*** -1.4NS 

Seedling shade tolerance 2.51 [0.58] 2.88 [0.41] -4.9*** 2.6 [0.71] 2.84 [0.39] -3.4** -1.4NS 0.5NS 

Environment         

Soil fertility (EIVN) 4.1 [1.5] 6.7 [1.3] -15*** 4.6 [1.7] 6.6 [1.2] -11.6*** -3.8*** 0.4NS 

Soil reaction (EIVR) 3.3 [1.1] 6.5 [0.7] -29.9*** 3.6 [1.3] 6.3 [0.8] -22.6*** -3** 0.9NS 

Soil moisture (EIVF) 5.8 [0.9] 5.9 [0.7] -1.1NS 5.9 [0.8] 6 [0.8] -1NS -1.5NS -0.7NS 

LQ basal area 2.2 [0.8] 3.1 [1.2] -5.7*** 2.2 [0.8] 3.1 [1.2] -6.4*** 0.7NS -0.1NS 

LQ cover 2.2 [0.7] 3 [0.9] -7.2*** 2.1 [0.7] 3.2 [1] -8.6*** 1.5NS -1.3NS 

Significance: NS, not significant;*P < 0.05;**P < 0.01;***P < 0.001. SCA: shade-casting ability; LQ: litter quality. FFI1&2: first and second survey time.493 
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Figures 494 

 495 

Fig. 1. Map of the location of the forest inventory plots used in this study. The Flemish Forest Inventory 496 

only covers the northern part of Belgium (region of Flanders; N 51.037, E 4.241). Blue and red points 497 

represent poor and rich forest plots, respectively. 498 
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 499 

Fig. 2. Response of the total cover of the understorey herbaceous vegetation to the total basal area 500 

(a, b) and the shade-casting ability (c, d) of the overstorey canopy in the poor and rich plots. Poor and 501 

rich plots refer to both soil fertility and species composition. Points represent raw data. Model fits are 502 

based on model 1 and are showed as posterior means (lines) and 95% credible intervals (shaded area); 503 

fits are shown for average values of all other predictors. For the poor plots Rmarginal is 0.13 (95%CI = 504 

[0.09, 0.18]) and Rconditional is 0.67 (95%CI = [0.63, 0.7]); and for the rich plots Rmarginal is 0.17 (95%CI = 505 

[0.07, 0.26]) and Rconditional is 0.5 (95%CI = [0.32, 0.63]). Red dots & full lines: Survey = 1; Bleu triangles 506 

&dashed lines: Survey = 2. 507 
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 508 

Fig. 3. Response of the competitive signature of the overstorey to the total basal area (a, b) and the 509 

shade-casting ability (c, d) of the overstorey canopy in the poor and rich plots. Poor and rich plots refer 510 

to both soil fertility and species composition. Points represent raw data. Model fits are based on model 511 

2 are and are showed as posterior means (lines) and 95% credible intervals (shaded area); fits are 512 

shown for average values of all other predictors. For the poor plots Rmarginal is 0.04 (95%CI = [0.01, 513 

0.08]) and Rconditional is 0.74 (95%CI = [0.7, 0.77]); and for the rich plots Rmarginal is 0.18 (95%CI = [0.07, 514 

0.29]) and Rconditional is 0.65 (95%CI = [0.53, 0.74]). Red dots & full lines: Survey = 1; Bleu triangles 515 

&dashed lines: Survey = 2. 516 
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Fig. 4. Response of the total tree seedling cover to the total basal area (a, b) and the shade-casting 518 

ability (c, d) of the overstorey canopy; and to the total cover (e, f) and the competitive signature (g, h) 519 

of the understorey vegetation in the poor and rich plots. Poor and rich plots refer to both soil fertility 520 

and species composition. Points represent raw data. Model fits are based on model 3 are and are 521 

showed as posterior means (lines) and 95% credible intervals (shaded area); fits are shown for average 522 

values of all other predictors. For the poor plots Rmarginal is 0.06 (95%CI = [0.03, 0.09]) and Rconditional 0.22 523 

(95%CI = [0.09, 0.33]); and for the rich plots Rmarginal is 0.09 (95%CI = [0.04, 0.15]) and Rconditional is 0.10 524 

(95%CI = [0.05, 0.18]). Red dots & full lines: Survey = 1; Bleu triangles &dashed lines: Survey = 2. 525 
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Fig. 5.  Response of the interval-censored Quercus seedling cover in the poor forest plots to the total 528 

basal area (a) and the shade-casting ability of the overstorey canopy (b); and to the total cover (c) 529 

and the competitive signature (d) of the understorey vegetation; and to the total basal area of 530 

parent trees (e). Points represent midpoints of the cover classes. Model fits are based on model 3 531 

with parent tree added as extra predictor in both ZI and beta part of the model and are showed as 532 

posterior means (lines) and 95% credible intervals (shaded area); fits are shown for average values of 533 

all other predictors. Rmarginal is 0.25 (95%CI = [0.18, 0.31]) and Rconditional is 0.40 (95%CI = [0.32, 0.47]); 534 

Red dots & full lines: Survey = 1; Bleu triangles &dashed lines: Survey = 2. 535 

  536 
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 537 

Fig. 6. Predictions simulating thinning cuts to initialise tree regeneration in both forest types and for 538 

Quercus alone. Poor and rich plots refer to both soil fertility and species composition. Three thinning 539 

intensities are predicted: starting from a basal area of 35 (red; dots), i.e. mature overstorey, and 540 

thinning to a basal area of 25, 15 or 5 m²/ha, with change in the composition of the overstorey and 541 

thus SCA (green; triangles) or without (blue; squares) change in composition. Points are mean 542 

predictions, thick lines are 80% PI and thin lines represent 95% PI. The y-axis scale for each figure 543 

varies. 544 

 545 
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Appendix A. Supplementary tables and figures 742 

Table A1. The nine classes of the transformed Braun-Blanquet scale based on van der Maarel (1979). 743 

Braun-Blanquet Class # Individuals Cover class (%) Cover (%) 

r very few (1-2) 0 - 0.5 0.25 

+ few (3-20) 0.5 - 1.5 1 

1 numerous (20-100) 1.5 - 3 2.25 

2m very numerous (uncountable)  3 - 5 4 

2a any 5 - 12.5 8.75 

2b any 12.5 - 25 18.75 

3 any 25 - 50 37.5 

4 any 50 - 75 62.5 

5 any 75 - 100 87.5 

 744 

  745 
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Table A2. The number of plots where a tree seedling species is present for both surveys (FFI1 & FFI2) 746 

and number of plots where seedlings are present in at least one survey (unique plots) in the poor and 747 

rich forests. Poor and rich plots refer to both soil fertility and species composition. Species marked in 748 

grey were selected for our analyses based on frequency and silvicultural importance per forest type. 749 

 Poor   Rich   

Species # Plots  #Unique plots # Plots  #Unique plots 

 FFI1 FFI2 Both FFI FFI1 FFI2 Both FFI 

Acer campestre 0 6 6 3 4 5 

Acer pseudoplatanus 42 42 58 17 20 27 

Acer species 0 2 2 0 1 1 

Alnus glutinosa 1 0 1 3 4 7 

Betula pendula 43 39 72 0 0 0 

Betula pubescens 40 12 50 0 0 0 

Betula species 0 29 29 0 2 2 

Carpinus betulus 4 7 10 3 5 6 

Cornus species 0 1 1 0 0 0 

Corylus avellana 11 26 31 6 14 16 

Crataegus monogyna 8 5 11 14 20 25 

Fagus sylvatica 14 35 42 4 8 8 

Frangula alnus 134 131 180 0 1 1 

Fraxinus excelsior 9 17 21 25 29 35 

Fraxinus species 0 1 1 0 2 2 

Ilex aquifolium 36 84 92 1 12 12 

Pinus sylvestris 52 57 84 0 0 0 

Populus canescens 0 1 1 0 2 2 

Populus tremula 3 4 6 2 1 2 

Prunus avium 18 17 28 12 15 22 

Prunus padus 2 2 3 2 6 6 

Quercus petraea 3 4 5 3 2 3 

Quercus robur 190 184 240 21 31 42 

Salix aurita 1 0 1 0 0 0 

Salix caprea 2 1 3 0 0 0 

Salix cinerea 0 1 1 0 0 0 

Salix species 0 1 1 0 1 1 

Sambucus nigra 28 17 31 34 25 34 

Sambucus racemosa 2 2 3 0 0 0 

Sorbus aucuparia 212 185 238 11 11 16 

Taxus baccata 4 13 15 1 2 2 

Tilia species 0 1 1 0 1 1 

Ulmus glabra 0 1 1 0 2 2 

Viburnum opulus 6 2 6 4 8 11 

Cornus mas 0 0 0 2 0 2 
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Cornus sanguinea 0 0 0 5 7 9 

Crataegus species 0 0 0 0 1 1 

Euonymus europaeus 0 0 0 0 1 1 

Prunus spinosa 0 0 0 0 1 1 

Salix alba 0 0 0 0 1 1 

Sorbus species 0 0 0 0 1 1 

Tilia cordata 0 0 0 0 1 1 

Ulmus minor 0 0 0 3 1 3 

Ulmus species 0 0 0 0 1 1 

 750 

  751 
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Table A3. Species-specific shade tolerance indices (± Standard errors) for the seedling species selected 752 

in this study from Niinemets and Valladares (2010). The tolerance scales range from 0 (no tolerance) 753 

to 5 (maximal tolerance). 754 

Tree seedling species Shade tolerance 

Acer pseudoplatanus 3.73 ± 0.21 

Betula pendula 2.03 ± 0.09 

Betula pubescens 1.85 ± 0.07 

Fagus sylvatica 4.56 ± 0.11 

Fraxinus excelsior 2.66 ± 0.13 

Pinus sylvestris 1.67 ± 0.33 

Prunus avium 3.33 ± 0.33 

Quercus petraea 2.73 ± 0.27 

Quercus robur 2.45 ± 0.28 

 755 

  756 
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Table A4. Overview of the litter quality (LQ) index scores (1: very low decomposition rate; 5: very high 757 

decomposition rate) (adapted from Hermy, 1985) and the shade-casting ability (SCA) scores (1: very 758 

low shade-casting ability; 6: very high shade-casting ability) (adapted from Ellenberg, 1996) used for 759 

the calculation of the cover weighted average of the litter quality and shade-casting ability of the 760 

canopy for each vegetation plot. 761 

Species SCA LQ Species SCA LQ 

Acer campestre 4 4 Populus tremula 3 2 

Acer platanoides 5 3 Prunus avium 4 4 

Acer pseudoplatanus 5 3 Prunus padus 4 4 

Alnus glutinosa 4 4 Quercus petraea 3 1 

Alnus incana 5 3 Quercus petraea/robur 3 1 

Betula pendula 2 2 Quercus robur/petraea 3 1 

Betula pubescens 2 2 Quercus robur 3 1 

Betula species 2 2 Quercus rubra 4 1 

Carpinus betulus 6 3 Quercus species 3 1 

Castanea sativa 4 2 Robinia pseudoacacia 4 4 

Cornus mas 3 5 Salix alba 3 5 

Cornus sanguinea 3 5 Salix caprea 2 3 

Corylus avellana 4 3 Salix spp. (small leaves) 3 5 

Fagus sylvatica 6 1 Salix spp. (broad leaves) 2 3 

Frangula dodonei   5 Sambucus nigra 4 5 

Fraxinus excelsior 4 5 Sorbus aucuparia 3 3 

Larix decidua 2 1 Sorbus domestica 3 3 

Larix kaempferi 2 1 Sorbus torminalis 3 3 

Larix species 2 1 Sorbus aria 3 3 

Picea abies 5 1 Taxus baccata 6 1 

Pinus sylvestris 2 3 Tilia cordata 5 4 

Pinus nigra 2 3 Tilia cordata/platyphyllos 5 4 

Pinus nigra laricio 2 3 Tilia platyphyllos 5 4 

Pinus species 2 3 Tilia species 5 4 

Populus alba 3 4 Ulmus glabra 5 5 

Populus canadensis 3 3 Ulmus laevis 4 5 

Populus x canadensis 3 3 Ulmus minor 4 5 

Populus canescens 3 4 Ulmus procera 4 5 

Populus species 3 4 Ulmus species 4 5 

 762 

  763 
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Fig. A1. Parameter estimates for the three models for (a, b, c) the poor and (d, e, f) rich forest types and (g) the single-species model for Quercus. Poor and 764 
rich plots refer to both soil fertility and species composition. Means, 80 (thick lines) and 95 % (thin lines) credible intervals are given for the standardized 765 
fixed effects (logit-scaled). For the zero-inflated beta models, parameter estimates are split up into the beta part (B) and zero-inflation part (ZI). The beta 766 
part expresses the increase in the tree seedling cover per increase in one standard deviation of the predictor. The ZI part expresses the increase in chance 767 
for absence per increase in one standard deviation of the predictor. 768 

 769 



46 
 

 770 
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Fig. A2. Parameter estimates for the three models for (a, b, c) the poor and (d, e, f) rich forest types and (g) the single-species model for Quercus. Poor and 772 
rich plots refer to both soil fertility and species composition. Here, overstorey cover and SCA weighted by overstorey cover were used instead of total basal 773 
area. Means, 80 (thick lines) and 95 % (thin lines) credible intervals are given for the standardized fixed effects. For the zero-inflated beta models, parameter 774 
estimates are split up into the beta part (B) and zero-inflation part (ZI; logit-scale). The beta part expresses the increase in the tree seedling cover per increase 775 
in one standard deviation of the predictor. The ZI part expresses the increase in chance for absence per increase in one standard deviation of the predictor. 776 
 777 
 778 

 779 
 780 

(a) (b) (c) 

(e) (e) (f) 
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Appendix B. Statistical models 794 

Full notation of the models used in this study. In all models, i indexes Survey and j indexes Plot. SCA 795 

= shade-casting ability. 796 

Models 1 and 2 are linear multilevel models using a Gaussian distribution. For Model 1, the 797 

distribution was truncated with lower bound zero. 798 

𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑒𝑦 𝑐𝑜𝑣𝑒𝑟𝑖𝑗 =  𝛽0  + 𝛼𝑗 + 𝛽1𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎𝑖𝑗 + 𝛽2𝑆𝐶𝐴𝑖𝑗 +  𝛽3𝑆𝑢𝑟𝑣𝑒𝑦𝑖 +799 

 𝛽4𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖 + 𝛽5𝑆𝐶𝐴𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖  +  𝜖𝑖𝑗   800 

with, 801 

𝛼𝑗 ~ N(0, 𝜎𝛼
2)   Random effect ‘Plot’ 802 

𝜖𝑖𝑗 ~ N(0, 𝜎2)   Noise term       (Model 1) 803 

 804 

𝐶-𝑠𝑐𝑜𝑟𝑒𝑖𝑗 =  𝛽0  + 𝛼𝑗 +  𝛽1𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎𝑖𝑗 +  𝛽2𝑆𝐶𝐴𝑖𝑗 + 𝛽3𝑆𝑢𝑟𝑣𝑒𝑦𝑖 +805 

 𝛽4𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖 + 𝛽5𝑆𝐶𝐴𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖  +  𝜖𝑖𝑗   806 

with, 807 

𝛼𝑗 ~ N(0, 𝜎𝛼
2)   Random effect ‘Plot’ 808 

𝜖𝑖𝑗 ~ N(0, 𝜎2)   Noise term       (Model 2) 809 

 810 

Model 3 is a mixed-effect zero-inflated beta distribution model. For both the beta part and the zero-811 

inflation part, the logit link function was used, whereas for the precision parameter, the log link 812 

function was used. 813 
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𝑔(𝜇𝑖𝑗) =  𝛽0  + 𝛼𝑗 + 𝛽1𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎𝑖𝑗 + 𝛽2𝑆𝐶𝐴𝑖𝑗 +  𝛽3𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑒𝑦 𝑐𝑜𝑣𝑒𝑟𝑖𝑗 +814 

 𝛽4𝐶-𝑠𝑐𝑜𝑟𝑒𝑖𝑗 +  𝛽5𝑆𝑢𝑟𝑣𝑒𝑦𝑖 + 𝛽6𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖 +  𝛽7𝑆𝐶𝐴𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖  +815 

 𝛽8𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑒𝑦 𝑐𝑜𝑣𝑒𝑟𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖 +  𝛽9𝐶-𝑠𝑐𝑜𝑟𝑒𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖      (Model 3: Beta part) 816 

with, 817 

𝜇𝑖𝑗 = 𝐄(𝑌𝑖𝑗)   Expected value 818 

𝑔(𝑝) =  𝑙𝑜𝑔
𝑝

1−𝑝
  Logit link 819 

𝑌𝑖𝑗  ~ Beta(𝜇𝑖𝑗, 𝜑) =
1

𝐵(𝜇𝑖𝑗𝜑,(1−𝜇𝑖𝑗)𝜑)
𝑌𝜇𝑖𝑗𝜑−1(1 − 𝑌)(1−𝜇𝑖𝑗)𝜑−1 if 𝑌𝑖𝑗  ∈ ]0,1[  Beta distribution 820 

𝛼𝑗 ~ N(0, 𝜎𝛼
2)  Random effect ‘Plot’      821 

With B(), the beta function. 822 

𝑔(𝑧𝑖𝑗) = 𝛽0  + 𝛼𝑗 +  𝛽1𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎𝑖𝑗 +  𝛽2𝑆𝐶𝐴𝑖𝑗 +  𝛽3𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑒𝑦 𝑐𝑜𝑣𝑒𝑟𝑖𝑗 +823 

 𝛽4𝐶-𝑠𝑐𝑜𝑟𝑒𝑖𝑗 +  𝛽5𝑆𝑢𝑟𝑣𝑒𝑦𝑖 + 𝛽6𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖 +  𝛽7𝑆𝐶𝐴𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖  +824 

 𝛽8𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑒𝑦 𝑐𝑜𝑣𝑒𝑟𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖 +  𝛽9𝐶-𝑠𝑐𝑜𝑟𝑒𝑖𝑗: 𝑆𝑢𝑟𝑣𝑒𝑦𝑖                (Model 3: zero-inflated part) 825 

with, 826 

𝑔𝑖𝑗 = 𝐄(𝑌𝑖𝑗)   Expected value 827 

𝑔(𝑝) =  𝑙𝑜𝑔
𝑝

1−𝑝
  Logit link 828 

𝑌𝑖𝑗  ~ Bernoulli(𝑧𝑖𝑗) = {
𝑧𝑖𝑗           

1 − 𝑧𝑖𝑗   
if 𝑌𝑖𝑗 ∈ ]0,1]

if 𝑌𝑖𝑗 = 0
  Bernoulli distribution 829 

𝛼𝑗 ~ N(0, 𝜎𝛼
2)  Random effect ‘Plot’ 830 

The zero-inflated part and beta-part are connected through: 831 

𝑌𝑖𝑗  ~ zero-inflated-beta(𝜇𝑖𝑗, 𝜑𝑖𝑗 , 𝑧𝑖𝑗) = {
𝑧𝑖𝑗Beta(𝜇𝑖𝑗, 𝜑)          

1 − 𝑧𝑖𝑗  

if 𝑌𝑖𝑗 ∈ ]0,1]

if 𝑌𝑖𝑗 = 0
  832 
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Appendix C. Testing lag effects 833 

We tested for potential lag effects of the predictors on the used response variables in our analyses, 834 

i.e. understorey cover, C-score and tree seedling cover. To test this for each forest type, we fitted the 835 

models as described in our methods and appendix B for the three responses measured at the second 836 

survey, but now using the predictors measured either at first or the second survey, as opposed to 837 

using the predictor data from both surveys for the plot-pairs as we did in our main analyses. As we 838 

only used data from one survey time in these analyses, the predictor for ‘Survey’, the interactions with 839 

‘Survey’ and the random effect ‘Plot’ were not included in the models. Then we calculated the 840 

Bayesian equivalent for R² for all these models using the bayes_R2 function (Gelman et al., 2017) to 841 

explore if the past state of the predictors (at survey 1) can better predict the contemporary responses 842 

(from survey 2) compared with the state of the predictors at the second survey. Results show that, for 843 

both forest types and for all responses, the contemporary predictor set could better (or similar) 844 

predict the contemporary responses than the past predictor set (Table C1). We did thus not find 845 

evidence for lag effects. 846 

 847 

Table C1. Bayesian R² values with 95% credible intervals for the different models that fitted the three 848 

responses, i.e. understorey cover, C-score and tree seedling cover, using the predictors measured 849 

either at first or the second survey. Poor and rich plots refer to both soil fertility and species 850 

composition. 851 

Poor forest type    Rich forest type   
 

Response Predictors R² 95% CI Response Predictors R² 95% CI 

Understorey cover ~ Survey 2 0.10 [0.05, 0.16] Understorey cover ~ Survey 2 0.10 [0.01, 0.22] 

 Survey 1 0.06 [0.02, 0.11]  Survey 1 0.10 [0.01, 0.23] 

C-score ~ Survey 2 0.04 [0.01, 0.08] C-score ~ Survey 2 0.21 [0.06, 0.35] 

 Survey 1 0.03 [0, 0.07]  Survey 1 0.22 [0.07, 0.36] 

Tree seedling cover ~ Survey 2 0.04 [0.02, 0.08] Tree seedling cover ~ Survey 2 0.06 [0.02, 0.13] 

 Survey 1 0.02 [0, 0.05]  Survey 1 0.05 [0.01, 0.12] 

CI: credibility interval 852 


