5,360 research outputs found

    Spatial consistency in drivers of population dynamics of a declining migratory bird

    Get PDF
    1. Many migratory species are in decline across their geographical ranges. Single-population studies can provide important insights into drivers at a local scale, but effective conservation requires multi-population perspectives. This is challenging because relevant data are often hard to consolidate, and state-of- the-art analytical tools are typically tailored to specific datasets. 2. We capitalized on a recent data harmonization initiative (SPI-Birds) and linked it to a generalized modelling framework to identify the demographic and environmental drivers of large-scale population decline in migratory pied flycatchers (Ficedula hypoleuca) breeding across Britain. 3. We implemented a generalized integrated population model (IPM) to estimate age-specific vital rates, including their dependency on environmental conditions, and total and breeding population size of pied flycatchers using long-term (34–64 years) monitoring data from seven locations representative of the British breeding range. We then quantified the relative contributions of different vital rates and population structure to changes in short-and long-term population growth rate using transient life table response experiments (LTREs). 4. Substantial covariation in population sizes across breeding locations suggested that change was the result of large-scale drivers. This was supported by LTRE analyses, which attributed past changes in short-term population growth rates and long-term population trends primarily to variation in annual survival and dispersal dynamics, which largely act during migration and/or nonbreeding season. Contributions of variation in local reproductive parameters were small in comparison, despite sensitivity to local temperature and rainfall within the breeding period. 5. We show that both short-and long-term population changes of British breeding pied flycatchers are likely linked to factors acting during migration and in nonbreeding areas, where future research should be prioritized. We illustrate the potential of multi-population analyses for informing management at (inter)national scales and highlight the importance of data standardization, generalized and accessible analytical tools, and reproducible workflows to achieve them. annual survival, comparative analysis, environmental effects, full annual cycle, integrated population model, LTRE, multi-population, pied flycatcherpublishedVersio

    Expedited batch processing and analysis of transposon insertions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With advances in sequencing technology, greater and greater amounts of eukaryotic genome data are becoming available. Often, large portions of these genomes consist of transposable elements, frequently accounting for 50% or more in vertebrates. Each transposable element family may have thousands or tens of thousands of individual copies within a given genome, and therefore it can take an exorbitant amount of time and effort to process data in a meaningful fashion.</p> <p>Findings</p> <p>In order to combat this problem, we developed a set of bioinformatics techniques and programs to streamline the analysis. This includes a unique Perl script which automates the process of taking BLAST, Repeatmasker and similar data to extract and manipulate the hit sequences from the genome. This script, called Process_hits uses an object-oriented methodology to compile all hit locations from a given file for processing, organize this data into useable categories, and output it in multiple formats.</p> <p>Conclusions</p> <p>The program proved capable of handling large amounts of transposon data in an efficient fashion. It is equipped with a number of useful sub-functions, each of which is contained within its own sub-module to allow for greater expandability and as a foundation for future program design.</p

    A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response

    Get PDF
    Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.National Institutes of Health (U.S.) (New Innovator Award)Smith Family FoundationDamon Runyon Cancer Research FoundationSearle Scholars ProgramNational Institutes of Health (U.S.) (1R01CA119176-01

    Slingshot: a PiggyBac based transposon system for tamoxifen-inducible ‘self-inactivating’ insertional mutagenesis

    Get PDF
    We have developed a self-inactivating PiggyBac transposon system for tamoxifen inducible insertional mutagenesis from a stably integrated chromosomal donor. This system, which we have named ‘Slingshot’, utilizes a transposon carrying elements for both gain- and loss-of-function screens in vitro. We show that the Slingshot transposon can be efficiently mobilized from a range of chromosomal loci with high inducibility and low background generating insertions that are randomly dispersed throughout the genome. Furthermore, we show that once the Slingshot transposon has been mobilized it is not remobilized producing stable clonal integrants in all daughter cells. To illustrate the efficacy of Slingshot as a screening tool we set out to identify mediators of resistance to puromycin and the chemotherapeutic drug vincristine by performing genetrap screens in mouse embryonic stem cells. From these genome-wide screens we identified multiple independent insertions in the multidrug resistance transporter genes Abcb1a/b and Abcg2 conferring resistance to drug treatment. Importantly, we also show that the Slingshot transposon system is functional in other mammalian cell lines such as human HEK293, OVCAR-3 and PE01 cells suggesting that it may be used in a range of cell culture systems. Slingshot represents a flexible and potent system for genome-wide transposon-mediated mutagenesis with many potential applications

    Stromal and therapy-induced macrophage proliferation promotes PDAC progression and susceptibility to innate immunotherapy

    Get PDF
    Tumor-associated macrophages (TAMs) are abundant in pancreatic ductal adenocarcinomas (PDACs). While TAMs are known to proliferate in cancer tissues, the impact of this on macrophage phenotype and disease progression is poorly understood. We showed that in PDAC, proliferation of TAMs could be driven by colony stimulating factor-1 (CSF1) produced by cancer-associated fibroblasts. CSF1 induced high levels of p21 in macrophages, which regulated both TAM proliferation and phenotype. TAMs in human and mouse PDACs with high levels of p21 had more inflammatory and immunosuppressive phenotypes. p21 expression in TAMs was induced by both stromal interaction and/or chemotherapy treatment. Finally, by modeling p21 expression levels in TAMs, we found that p21-driven macrophage immunosuppression in vivo drove tumor progression. Serendipitously, the same p21-driven pathways that drive tumor progression also drove response to CD40 agonist. These data suggest that stromal or therapy-induced regulation of cell cycle machinery can regulate both macrophage-mediated immune suppression and susceptibility to innate immunotherapy

    Fundamental movement skills: an important focus

    Full text link
    Purpose: Recent international conference presentations have critiqued the promotion of fundamental movement skills (FMS) as a primary pedagogical focus. Presenters have called for a debate about the importance of, and rationale for teaching FMS, and this letter is a response to that call. The authors of this letter are academics who actively engage in FMS research. Method: We have answered a series of contentions about the promotion of FMS using the peer reviewed literature to support our perspective. Results: We define what we mean by FMS, discuss the context of what skills can be considered fundamental, discuss how the development of these skills is related to broader developmental health contexts, and recommend the use of different pedagogical approaches when teaching FMS. Conclusion: We conclude the promotion of FMS is an important focus in Physical Education (PE) and sport and provide future research questions for investigation
    corecore