102 research outputs found

    Use of biological based therapy in patients with cardiovascular diseases in a university-hospital in New York City

    Get PDF
    BACKGROUND: The use of complementary and alternative products including Biological Based Therapy (BBT) has increased among patients with various medical illnesses and conditions. The studies assessing the prevalence of BBT use among patients with cardiovascular diseases are limited. Therefore, an evaluation of BBT in this patient population would be beneficial. This was a survey designed to determine the effects of demographics on the use of Biological Based Therapy (BBT) in patients with cardiovascular diseases. The objective of this study was to determine the effect of the education level on the use of BBT in cardiovascular patients. This survey also assessed the perceptions of users regarding the safety/efficacy of BBT, types of BBT used and potential BBT-drug interactions. METHOD: The survey instrument was designed to assess the findings. Patients were interviewed from February 2001 to December 2002. 198 inpatients with cardiovascular diseases (94 BBT users and 104 non-users) in a university hospital were included in the study. RESULTS: Users had a significantly higher level of education than non-users (college graduate: 28 [30%] versus 12 [12%], p = 0.003). Top 10 BBT products used were vitamin E [41(43.6%)], vitamin C [30(31.9%)], multivitamins [24(25.5%)], calcium [19(20.2%)], vitamin B complex [17(18.1%)], fish oil [12(12.8%)], coenzyme Q10 [11(11.7%)], glucosamine [10(10.6%)], magnesium [8(8.5%)] and vitamin D [6(6.4%)]. Sixty percent of users' physicians knew of the BBT use. Compared to non-users, users believed BBT to be safer (p < 0.001) and more effective (p < 0.001) than prescription drugs. Forty-two potential drug-BBT interactions were identified. CONCLUSION: Incidence of use of BBT in cardiovascular patients is high (47.5%), as is the risk of potential drug interaction. Health care providers need to monitor BBT use in patients with cardiovascular diseases

    A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Skeletal muscle depletion is an important complication of chronic obstructive pulmonary disease (COPD) but little prospective data exists about the rate at which it occurs and the factors that promote its development. We therefore prospectively investigated the impact of disease severity, exacerbation frequency and treatment with corticosteroids on change in body composition and maximum isometric quadriceps strength (QMVC) over one year. METHODS: 64 patients with stable COPD (FEV(1 )mean (SD) 35.8(18.4) %predicted) were recruited from clinic and studied on two occasions one year apart. Fat free mass was determined using bioelectrical impedance analysis and a disease specific regression equation. RESULTS: QMVC fell from 34.8(1.5) kg to 33.3(1.5) kg (p = 0.04). The decline in quadriceps strength was greatest in those with the highest strength at baseline (R -0.28 p = 0.02) and was not correlated with lung function, exacerbation frequency or steroid treatment. Decline in fat free mass was similarly higher in those with largest FFM at baseline (R = -0.31 p = 0.01) but was more strongly correlated with greater gas trapping (R = -0.4 p = 0.001). Patients with frequent exacerbations (>1 per year) (n = 36) experienced a greater decline in fat free mass compared to infrequent exacerbators (n = 28) -1.3(3.7)kg vs. +1.2(3.1)kg (p = 0.005), as did patients on maintenance oral steroids (n = 8) -2.8(3.3) kg vs. +0.2(3.5) kg (p = 0.024) whereas in those who stopped smoking (n = 7) fat free mass increased; +2.7(3.1) kg vs. -0.51(3.5) kg (p = 0.026). CONCLUSION: Decline in fat free mass in COPD is associated with worse lung function, continued cigarette consumption and frequent exacerbations. Factors predicting progression of quadriceps weakness could not be identified from the present cohort

    Effect of obesity on constant workrate exercise in hyperinflated men with COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) and a high body mass index (BMI) can both affect pulmonary volumes as well as exercise tolerance, but their combined effect on these outcomes is not well known. The aim of this study was to investigate the effects of increased BMI during constant workrate cycle ergometry in patients with COPD.</p> <p>Methods</p> <p>Men with COPD and hyperinflation were divided according to World Health Organization BMI classification: 84 normal BMI (NBMI), 130 overweight (OW) and 64 obese (OB). Patients underwent spirometric and lung volumes assessment and an incremental cycling exercise test. This was followed by a constant workrate exercise test (CET) at 75% of peak capacity. Inspiratory capacity and Borg dyspnea scores were measured at baseline, during and at the end of CET.</p> <p>Results and discussion</p> <p>FEV<sub>1 </sub>% predicted was not different across BMI classes. Total lung capacity and functional residual capacity were significantly lower in OB and OW compared to NBMI patients. Peak VO<sub>2 </sub>in L·min<sup>-1 </sup>was significantly higher in OB and OW patients than in NBMI patients. CET time was not different across BMI classes (p = 0.11). Changes in lung volumes and dyspnea during CET were not different between BMI categories.</p> <p>Conclusions</p> <p>OB and OW patients with COPD had a higher peak VO<sub>2 </sub>than their lean counterparts. Endurance time, dyspnea and changes in lung volumes during CET were similar between BMI categories.</p

    Low oxygen saturation and mortality in an adult cohort; the Tromsø Study

    Get PDF
    Published version, also available at http://dx.doi.org/10.1186/s12890-015-0003-5Background: Oxygen saturation has been shown in risk score models to predict mortality in emergency medicine. The aim of this study was to determine whether low oxygen saturation measured by a single-point measurement by pulse oximetry (SpO2) is associated with increased mortality in the general adult population. Methods: Pulse oximetry was performed in 5,152 participants in a cross-sectional survey in Tromsø, Norway, in 2001–2002 (“Tromsø 5”). Ten-year follow-up data for all-cause mortality and cause of death were obtained from the National Population and the Cause of Death Registries, respectively. Cause of death was grouped into four categories: cardiovascular disease, cancer except lung cancer, pulmonary disease, and others. SpO2 categories were assessed as predictors for all-cause mortality and death using Cox proportional-hazards regression models after correcting for age, sex, smoking history, body mass index (BMI), C-reactive protein level, self-reported diseases, respiratory symptoms, and spirometry results. Results: The mean age was 65.8 years, and 56% were women. During the follow-up, 1,046 (20.3%) participants died. The age- and sex-adjusted hazard ratios (HRs) (95% confidence intervals) for all-cause mortality were 1.99 (1.33–2.96) for SpO2 ≤ 92% and 1.36 (1.15–1.60) for SpO2 93–95%, compared with SpO2 ≥ 96%. In the multivariable Cox proportional-hazards regression models that included self-reported diseases, respiratory symptoms, smoking history, BMI, and CRP levels as the explanatory variables, SpO2 remained a significant predictor of all-cause mortality. However, after including forced expiratory volume in 1 s percent predicted (FEV1% predicted), this association was no longer significant. Mortality caused by pulmonary diseases was significantly associated with SpO2 even when FEV1% predicted was included in the model. Conclusions: Low oxygen saturation was independently associated with increased all-cause mortality and mortality caused by pulmonary diseases. When FEV1% predicted was included in the analysis, the strength of the association weakened but was still statistically significant for mortality caused by pulmonary diseases

    Metabolic syndrome and carotid intima-media thickness in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: The aim of this study is to investigate the prevalence of metabolic syndrome (MetS), carotid intima media thickness (IMT), and serum C-reactive protein (CRP) levels in patients with chronic obstructive pulmonary disease (COPD), and the possible relationships among them. METHODS: Fifty stable COPD patients and 40 healthy controls were included in the study. The participants were further divided into four groups according to their smoking status. Pulmonary function tests were performed in COPD patients. Anthropometric measurements and blood chemistry analysis, serum CRP levels and carotid intima-media thickness (IMT) measurements were performed in all the study population. RESULTS: Prevalence of metabolic syndrome was 43% in COPD patients and 30% in the control group (p = 0.173). FEV(1)% and FEV(1)/FVC were higher in COPD patients with MetS (p = 0.001 and p = 0.014, respectively) compared to those without MetS. Prevalence of MetS was significantly different among the COPD patients with different stages (p = 0.017) with the highest value in stage 2 (59%). Carotid IMT was significantly higher in COPD patients than in control group (1.07 ± 0.25 mm and 0.86 ± 0.18 mm, respectively; p < 0.001). Serum CRP levels were not different in COPD patients and controls, however they were higher in individuals with MetS compared to those without MetS regardless of COPD presence (p = 0.02). CONCLUSIONS: Early markers of atherogenesis, in terms of carotid IMT, were found to be higher in COPD patients than in healthy controls. MetS prevalence was observed to decrease as the severity of airflow obstruction increased. Therefore, screening COPD patients for these cardiovascular risk factors would be a novel approach even in absence of symptoms

    Multidimensional prognostic indices for use in COPD patient care. A systematic review

    Get PDF
    Contains fulltext : 98117.pdf (publisher's version ) (Open Access)BACKGROUND: A growing number of prognostic indices for chronic obstructive pulmonary disease (COPD) is developed for clinical use. Our aim is to identify, summarize and compare all published prognostic COPD indices, and to discuss their performance, usefulness and implementation in daily practice. METHODS: We performed a systematic literature search in both Pubmed and Embase up to September 2010. Selection criteria included primary publications of indices developed for stable COPD patients, that predict future outcome by a multidimensional scoring system, developed for and validated with COPD patients only. Two reviewers independently assessed the index quality using a structured screening form for systematically scoring prognostic studies. RESULTS: Of 7,028 articles screened, 13 studies comprising 15 indices were included. Only 1 index had been explored for its application in daily practice. We observed 21 different predictors and 7 prognostic outcomes, the latter reflecting mortality, hospitalization and exacerbation. Consistent strong predictors were FEV1 percentage predicted, age and dyspnoea. The quality of the studies underlying the indices varied between fairly poor and good. Statistical methods to assess the predictive abilities of the indices were heterogenic. They generally revealed moderate to good discrimination, when measured. Limitations: We focused on prognostic indices for stable disease only and, inevitably, quality judgment was prone to subjectivity. CONCLUSIONS: We identified 15 prognostic COPD indices. Although the prognostic performance of some of the indices has been validated, they all lack sufficient evidence for implementation. Whether or not the use of prognostic indices improves COPD disease management or patients' health is currently unknown; impact studies are required to establish this
    corecore