324 research outputs found

    Wave-growth associated with turbulent spot in plane Poiseuille flow

    Get PDF
    A kinematic wave theory is used to investigate the cause of the rapid growth of waves observed at the wingtip of turbulent spot in plane Poiseuille flow. It is found that the qualitative behavior of the wave motions is well described by Landahl's breakdown criterion as the wave selection procedure. The predicted wave number, wave angle, and phase velocity are in agreement with those values obtained in a direct simulation

    Design and construction of a flexible laboratory-scale mixing apparatus for continuous ethylene supplementation of fresh produce

    Get PDF
    The design and construction of a laboratory-scale apparatus for generating variable concentrations and flow rates of exogenous ethylene for fresh produce supplementation during storage trials is described. A stock of compressed ethylene in nitrogen (5000 ÎŒl l−1) was blended into a continuous flow stream of air and diluted to the desired concentrations. The ethylene and air flow rates were controlled with calibrated mass flow control valves. An empirical mathematical model was derived for real-time variation of both the mixed concentration and flow rate during continuous flow. Validation of the model was performed using fresh sweet potato as a case study where a steady continuous ethylene concentration of 10 ÎŒl l−1 was achieved for three months. The bespoke system offers easy-to-manage ethylene supplementation for research

    Prediction of ‘Nules Clementine’ mandarin susceptibility to rind breakdown disorder using Vis/NIR spectroscopy

    Get PDF
    The use of diffuse reflectance visible and near infrared (Vis/NIR) spectroscopy was explored as a non-destructive technique to predict ‘Nules Clementine’ mandarin fruit susceptibility to rind breakdown (RBD) disorder by detecting rind physico-chemical properties of 80 intact fruit harvested from different canopy positions. Vis/NIR spectra were obtained using a LabSpec¼ spectrophotometer. Reference physico-chemical data of the fruit were obtained after 8 weeks of storage at 8 °C using conventional methods and included RBD, hue angle, colour index, mass loss, rind dry matter, as well as carbohydrates (sucrose, glucose, fructose, total carbohydrates), and total phenolic acid concentrations. Principal component analysis (PCA) was applied to analyse spectral data to identify clusters in the PCA score plots and outliers. Partial least squares (PLS) regression was applied to spectral data after PCA to develop prediction models for each quality attribute. The spectra were subjected to a test set validation by dividing the data into calibration (n = 48) and test validation (n = 32) sets. An extra set of 40 fruit harvested from a different part of the orchard was used for external validation. PLS-discriminant analysis (PLS-DA) models were developed to sort fruit based on canopy position and RBD susceptibility. Fruit position within the canopy had a significant influence on rind biochemical properties. Outside fruit had higher rind carbohydrates, phenolic acids and dry matter content and lower RBD index than inside fruit. The data distribution in the PCA and PLS-DA models displayed four clusters that could easily be identified. These clusters allowed distinction between fruit from different preharvest treatments. NIR calibration and validation results demonstrated that colour index, dry matter, total carbohydrates and mass loss were predicted with significant accuracy, with residual predictive deviation (RPD) for prediction of 3.83, 3.58, 3.15 and 2.61, respectively. The good correlation between spectral information and carbohydrate content demonstrated the potential of Vis/NIR as a non-destructive tool to predict fruit susceptibility to RBD

    Dynamic platform modeling for concurrent product-production reconfiguration

    Get PDF
    To meet a wide range of customer needs, a variety of product concepts can be modeled employing a platform approach. Whereas frequent market changes can be accommodated by dynamically modifying product concepts in iterations, capabilities in production are seldom well incorporated as part of design iterations. In this paper, a dynamic platform modeling approach that supports concurrent product-production reconfiguration is presented. The approach builds on Set-Based Concurrent Engineering (SBCE) processes and a function modeling technique is used to represent product-production variety streams inherent in a production operation model. To demonstrate the approach, a comprehensive case from the aerospace industry is presented. Conceptual representations of a set of aero engine sub-systems and a variety of welding configurations, including their inherent constraints, are mutually modeled and assessed. The results show that a set of product-production alternatives can be dynamically controlled by integrating product-production constraints using a production operation model. Following SBCE processes, inferior alternatives can be put aside until new information becomes available and a new set of alternatives can be reconfigured. The dynamics and concurrency of the approach can potentially reduce the risk of late and costly modifications that propagate from design to production

    Addressing potential sources of variation in several non-destructive techniques for measuring firmness in apples

    Get PDF
    Measurements of firmness have traditionally been carried out according to the Magness Taylor (MT) procedure; using a texture analyser or penetrometer in reference texture tests. Non-destructive tests like the acoustic impulse response of acoustic firmness sensors (AFSs), a low-mass impact firmness sensor Sinclair International (SIQ-FT) and impact test (Lateral Impact – UPM) have also been used to measure texture and firmness. The objectives of this study were to evaluate the influence of different sources of variation in these three non-destructive tests and to evaluate their respective capabilities of discriminating between fruit maturity at two different harvest dates, turgidity before and after dehydration treatment and ripening after different storage periods. According to our results, fruit studied an unexpected AFS trend with turgidity. Contact measurements (Lateral Impact – UPM and SIQ-FT) appeared highly sensitive to changes in turgidity, but were less able to follow changes in ripening caused by storage period. Contact measurements were suitable for detecting differences between fruits from different harvest dates and showed higher correlation coefficients with reference texture tests than acoustic measurements. The Lateral Impact – UPM test proved better at separating fruits according to turgidity than the SIQ-FT instrumen

    Tricolored Lattice Gauge Theory with Randomness: Fault-Tolerance in Topological Color Codes

    Get PDF
    We compute the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates, when both qubit and measurement errors are present. By mapping the problem onto a statistical-mechanical three-dimensional disordered Ising lattice gauge theory, we estimate via large-scale Monte Carlo simulations that color codes are stable against 4.5(2)% errors. Furthermore, by evaluating the skewness of the Wilson loop distributions, we introduce a very sensitive probe to locate first-order phase transitions in lattice gauge theories.Comment: 12 pages, 5 figures, 1 tabl

    Manipulating quantum information by propagation

    Full text link
    We study creation of bi- and multipartite continuous variable entanglement in structures of coupled quantum harmonic oscillators. By adjusting the interaction strengths between nearest neighbors we show how to maximize the entanglement production between the arms in a Y-shaped structure where an initial single mode squeezed state is created in the first oscillator of the input arm. We also consider the action of the same structure as an approximate quantum cloner. For a specific time in the system dynamics the last oscillators in the output arms can be considered as imperfect copies of the initial state. By increasing the number of arms in the structure, multipartite entanglement is obtained, as well as 1 to M cloning. Finally, we are considering configurations that implement the symmetric splitting of an initial entangled state. All calculations are carried out within the framework of the rotating wave approximation in quantum optics, and our predictions could be tested with current available experimental techniques.Comment: 9 pages, APS forma

    Quantum search by measurement

    Get PDF
    We propose a quantum algorithm for solving combinatorial search problems that uses only a sequence of measurements. The algorithm is similar in spirit to quantum computation by adiabatic evolution, in that the goal is to remain in the ground state of a time-varying Hamiltonian. Indeed, we show that the running times of the two algorithms are closely related. We also show how to achieve the quadratic speedup for Grover's unstructured search problem with only two measurements. Finally, we discuss some similarities and differences between the adiabatic and measurement algorithms.Comment: 8 pages, 2 figure

    Universal quantum interfaces

    Get PDF
    To observe or control a quantum system, one must interact with it via an interface. This letter exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored.Comment: 4 pages, 3 figures, RevTe

    Implications of Electronics Constraints for Solid-State Quantum Error Correction and Quantum Circuit Failure Probability

    Full text link
    In this paper we present the impact of classical electronics constraints on a solid-state quantum dot logical qubit architecture. Constraints due to routing density, bandwidth allocation, signal timing, and thermally aware placement of classical supporting electronics significantly affect the quantum error correction circuit's error rate. We analyze one level of a quantum error correction circuit using nine data qubits in a Bacon-Shor code configured as a quantum memory. A hypothetical silicon double quantum dot quantum bit (qubit) is used as the fundamental element. A pessimistic estimate of the error probability of the quantum circuit is calculated using the total number of gates and idle time using a provably optimal schedule for the circuit operations obtained with an integer program methodology. The micro-architecture analysis provides insight about the different ways the electronics impact the circuit performance (e.g., extra idle time in the schedule), which can significantly limit the ultimate performance of any quantum circuit and therefore is a critical foundation for any future larger scale architecture analysis.Comment: 10 pages, 7 figures, 3 table
    • 

    corecore