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Prediction of ‘Nules Clementine’ mandarin susceptibility to rind breakdown1

disorder using Vis/NIR spectroscopy.2

3

ABSTRACT4

The use of diffuse reflectance visible and near infrared (Vis/NIR) spectroscopy was5

explored as a non-destructive technique to predict ‘Nules Clementine’ mandarin fruit6

susceptibility to rind breakdown disorder (RBD) by detecting rind physico-chemical7

properties of individual intact fruit from different canopy positions. Vis/NIR spectra were8

obtained using a LabSpec® spectrometer. Reference physico-chemical data of the fruit9

were obtained after 8 weeks of storage at 8C using conventional methods and included10

RBD, H, colour index, fruit mass loss, rind dry matter, sugar (sucrose, glucose, fructose,11

total sugars), phenolic acid concentrations. Principal component analysis (PCA) was12

applied to analyse spectral data to identify clusters in the PCA score plots and outliers.13

Partial least squares regression (PLSR) was applied to spectral data after PCA to develop14

prediction models for each quality attribute. The spectra were subjected to a test set15

validation by randomly dividing the data into calibration (60%) and validation (40%)16

sets. PLS-discriminant analysis (PLS-DA) models were developed to sort fruit based on17

canopy position and RBD susceptibility. Fruit position within the canopy had a18

significant influence on rind biochemical properties. Outside fruit had higher rind sugar,19

phenolic acids and dry matter content and lower RBD index than inside fruit. The data20

distribution in the PCA and PLS-DA models displayed four clusters that could easily be21

identified. These clusters allowed distinction between fruit from different preharvest22

treatments. NIR calibration and validation results demonstrated that sugars, dry matter,23
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colour index and mass loss were predicted with significant accuracy. The good24

correlation between spectral information and sugar content demonstrated the potential of25

Vis/NIR as a non-destructive tool to predict fruit susceptibility to RBD.26

27

Keywords: Non-destructive technique · Vis/near infrared spectroscopy· Rind breakdown28

disorder (RBD) · Citrus · ‘Nules Clementine’ Mandarin · Canopy position.29

30

1. Introduction31

32

South Africa produces approximately 100 000 tons of Clementine mandarins per annum,33

making it the third largest producer and exporter of Clementine mandarins in the world34

after Spain and Morocco (Barry and Rabe, 2004). The development of various types of35

physiological disorders limits the postharvest storage capability and causes commercial36

losses. A lack of understanding the physiological mechanism underlying these disorders37

affects both supply and profits. The challenge is significant regarding rind breakdown38

disorder (RBD) of ‘Nules Clementine’ mandarins (Citrus reticulate Blanco.) that do not39

manifest during harvest grading and postharvest treatments but develop about 3 to 540

weeks after harvest.41

42

RBD is initially manifested on the equatorial plane as small, irregular, slightly sunken43

and colourless patches of about 3 to 6 mm in diameter scattered about the flavedo (the44

outer-most, pigmented part of citrus rind) of the fruit (Cronje et al., 2011). These sunken45

areas, occurring directly above and among the oil glands of the flavedo, coalesce46
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producing larger affected areas, turning redish-brown to dark-brown, become dry and47

necrotic in the severe stages of the disorder with extended storage period (Cronje, 2007,48

2009). According to Agustí et al. (2001) browning of affected rind surface appears to be49

the result of oxidative processes.50

51

Intensive research has been conducted towards determining factors triggering RBD. As a52

result, it has been established by several research groups that different microclimates are53

influencing sensitivity of fruit to RBD and similar rind disorders such as rind pitting on54

oranges (Alférez and Zacarìas, 2001) and grapefruit (Alférez and Burns, 2004) and peteca55

spots on lemons (Wild, 1991). In a study conducted in Spain (northern hemisphere),56

Almela et al. (1992) reported that these fluctuations could also be observed among fruits57

from the same tree and the incidence being by exposure of individual fruit to the sun.58

These investigators further showed that fruit oriented to the north-west (NW) in canopy59

were most affected by the disorder. In a later study conducted in the same country, Agustí60

et al. (2001) corroborated that fruit positioned in the NW face of the tree to be more61

prone to develop the rind pitting disorder and this was reported to be consistent over five62

seasons. Similar observations were reported in ‘Fortune’ (Duarte and Guardiola, 1995)63

and ‘Encore’ (Chikaizumi, 2000) mandarin fruit, where it was maintained that the64

disorder affects mainly the exposed fruit from the north-west quadrant of the tree.65

66

In a study conducted in South Africa (southern hemisphere), fruit position, and therefore67

exposure to high (outside) or low (inside) light levels in the canopy, affect the flavedo68

concentration of carbohydrates during fruit development (Cronje, 2009; Cronje et al.69
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2011). The latter authors reported the flavedo from fruit borne on the outside of the70

canopy to have significantly higher sucrose, glucose and fructose content than the fruit71

borne inside the canopy. Interestingly, the results obtained by this group of investigators72

revealed a correlation between fruit position, rind sugar content and ultimately73

development of RBD. The incidence of rind breakdown was higher on inside fruit74

compared with the outside fruit and this was consistent from season to season and could75

be attributed to their exclusion from adequate sunlight during their fruit development. In76

addition, fruit borne inside the canopy had lower chlorophyll and carotenoid contents,77

and therefore poorer rind colour (Khumalo, 2006), and lower carbohydrates rendered78

them susceptible to the disorder (Cronje, 2009). Although intensive research aimed at79

appreciating RBD has been conducted, the disorder still occurs frequently and80

unpredictably, reducing the quality of the fruit (Almela et al., 1992; Cronje, 2005).81

82

There is therefore a need to develop an objective, fast and non-destructive assessment83

that can be used to determine/predict citrus fruit susceptibility to rind disorders84

accurately. Non-visible information, such as that provided by near infrared (NIR) region85

of the spectrum can improve the inspection by detecting rind biochemical profile and86

hence the detection of non-visible physiological disorders (Blasco et al., 2007). Most87

current non-destructive quality measurement using NIR spectroscopy (NIRS) has been88

developed to assess fresh fruit according to their internal quality attributes (Butz et al.,89

2005). Very limited research work has been conducted to develop a technology that can90

assess, predict and monitor the physiological disorders and rind physiological disorders91

of citrus fruit in particular. Nevertheless, NIRS has been used successfully to detect92
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surface bruising in apple (Geeola et al., 1994), surface defects in peach (Miller and93

Delwiche, 1991), storage disorders in kiwifruit (Clark et al., 2004) and drying internal94

disorder in Tangerine citrus (Peiris et al., 1998). Recently, Teerachaichayut and co-95

workers (2011) successfully used NIR spectroscopy to non-destructively predict pericarp96

hardening disorder in magosteen fruit. The trend has constantly shifted towards97

developing reliable and cost effective technologies to non-destructively screen fruit98

physiological disorders. Recently, Zheng et al. (2010) used NIR in the reflectance mode99

to predict oleocellosis sensitivity in citrus fruit. A review by Magwaza et al. (2011)100

discusses the recent developments and application of Vis/NIR spectroscopy to non-101

destructively evaluate internal and external fruit quality.102

103

In summary, the knowledge of biochemical changes in the rind of citrus fruit that could104

be used to precisely predict fruit rind condition and therefore susceptibility to rind105

disorders is limited. However, previous research by Cronje et al. (2011) indicated that106

fruit position within the canopy affects rind biochemical profile, particularly107

carbohydrate concentration and hence susceptibility of fruit to RBD. This study aims to108

explore the use of diffuse reflectance Vis/NIR spectroscopy in the wavelength range of109

350-2500 nm as a non-destructive tool to predict susceptibility to RBD by detecting rind110

physico-chemical properties of individual intact fruit from different canopy positions.111

112

2. Material and methods113

114
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2.1. Site, fruit sampling and postharvest handling115

116

A total of 15 ‘Nules Clementine’ mandarin trees in an orchard at Stellenbosch University117

experimental farm, Western Cape Province, South Africa (33°53’4.56”S, 18°37’36.84”E)118

were identified and marked based on their health and fruit setting ability. On each tree,119

200 fruit from sun-exposed and 200 from shaded canopy positions were randomly120

selected and tagged. To increase our success of having fruit with RBD, a method of121

enhancing the disorder demonstrated by Cronje (2009) was adopted. Briefly, during122

January 2011 (after physiological drop about four months until commercial maturity),123

half of the selected fruit from each position was covered with brown paper bags without124

removing or covering subtending leaves. The study consisted of four preharvest125

treatments, viz., outside, outside bagged, inside and inside bagged.126

127

Upon reaching commercial maturity, on 16 May, individual fruit were harvested128

according to industry practice, coded according to treatment and canopy position and129

underwent all commercial postharvest practices, including drenching (Thiabenzole, 500130

mg/L; Imazalil, 500 mg/L and 2,4-dichlorophenoxyacetic acid, 125 mg/L) and waxing131

(polyethylene citrus wax, Citrushine®, Johannesburg, South Africa). After which they132

were brought to the postharvest evaluation laboratory, sorted to remove any defective133

fruit and weighed. A total of 80 blemish free fruit (20 fruit from each treatment) were134

selected to provide fruit samples for non-destructive and destructive measurements. After135

phytosanitary inspection and certification, these fruit were separately packed in boxes136
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marked, sent at room temperature via a courier service to Cranfield University (CU) in137

the United Kingdom, where postharvest storage took place.138

139

2.2. Spectral acquisition140

141

Vis/NIR spectra were obtained upon arrival at CU using a method described by Kuang142

and Mouazen (2011). Spectral acquisition from intact fruit samples was carried out using143

a mobile fibre-optic Vis/NIR spectrophotometer (350-2500nm) (LabSpec2500(r) Near144

Infrared Analyzer, Analytical Spectral Devices Inc., USA) in diffuse reflectance mode145

equipped with one Si array (350-1000nm) and two Peltier cooled InGaAs detectors146

(1000-1800 nm and 1800-2500 nm). The sampling interval of the instrument was 1 nm.147

However, the spectral resolution was 3 nm at 700 nm and 10 nm at 1400 nm and 2100148

nm. A high intensity probe with an in-built light source was used. A quartz-halogen bulb149

of 3000 Kelvin light source and a detection fibre are gathered in the high intensity probe150

enclosing a 35° angle.151

152

Prior to scanning the fruit samples, and periodically at intervals of 30min, white reference153

measurements were taken. Fruit samples were placed in direct contact with the high154

intensity probe. Reflectance spectral data was acquired from 8 position of the fruit; 4155

from equatorial spots of the fruit and 2 from the stem-end and 2 from the stylar-end of the156

fruit, averaged and used for spectral pre-processing and multivariate analysis.157

158
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2.3. Physico-chemical measurements to obtain reference values159

160

2.3.1. Storage conditions, RBD rating, weight and rind colour161

162

After scanning, fruits were stored in a cold room with delivery air temperature of 8°C, a163

temperature which is known to cause the highest degree of RBD incidence (Khumalo,164

2006). During cold storage, fruit were scored weekly, for the incidence of RBD for the165

duration of 8 weeks. RBD was scored on a subjective scale from 0 = no breakdown to 3 =166

severe breakdown. RBD was then expressed as RBD index (RBDI), estimated as167

previously described (Alférez et al., 2003) and calculated according to the following168

formula previously reported for chilling injury and peel pitting by Lafuente et al. (1997)169

and Lafuente and Sala (2002):170

171

fruitofnumberTotal

classeachinfruitNo.of×)30({ 


RBD
RBDI (1)172

173

Fruit were weighed weekly using a calibrated balance (Mettler Toledo, ML3002E / 01,174

Switzerland). Rind colour components were measured in L*a*b* colour space using175

Minolta CR-400 colourimeter (Chroma Meter CR-400, Konica Minolta Sensing Inc.,176

Japan) after calibration using standard white tile (CR-A43; Y = 93.1, x = 0.3138; y =177

0.3203). From L*, a* and b* colour parameters, colour index (CI) was calculated178

according to Jimenez-Cuesta et al. (1981) using the following formula:179

180
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b×L

a×1000
CI (2)181

182

2.3.2. Sample preparation183

184

After 8 weeks in storage, fruit samples were destructed where rind was peeled from the185

rest of the fruit. The pulp was juiced and the juice used for fresh TSS analysis. TSS was186

measured with a digital hand-held refractometer (Palette, PR-32α, Brix 0.0-32.0, Atago, 187 

Co. LTD, Japan) using 1 mL of freshly squeezed juice and expressed as °Brix. The rind188

from each sample was snap frozen in liquid nitrogen, separated into two portions, of189

which one portion was stored at -40°C and the other at -80°C freezer until further190

analysis.191

192

Fresh frozen rind samples were freeze-dried in Edwards Modulyo freeze drier (W.193

Sussex, UK) for 7 days at 0.015 kPA and -55°C. Lyophilized samples were weighed and194

water content was calculated from freeze dried samples and expressed as a percentage of195

fresh weight. Samples were then ground using pestle and mortar into fine powder and196

returned into the freezer prior to being used for sugar and phenolic acids determination by197

HPLC.198

199

2.3.3. Extraction and HPLC quantification of non-structural sugars200

201

Sugar was extracted from 150 mg of fruit rind powder using 62.5% (v/v) aqueous202

methanol as described elsewhere by Terry et al. (2007). Following extraction,203
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concentration of fructose, glucose and sucrose was determined using an Agilent 1200204

series HPLC binary pump system (Agilent, Berks., UK), equipped with an Agilent205

refractive index detector (RID) G1362A, based on the method described by Crespo et al.206

(2010). Briefly, sample extracts was diluted (1:10), and injected into a Rezex RCM207

monosaccharide Ca+ (8%) column of 300 mm x 7.8 mm diameter (Phenomenex,208

Torrance, CA) with a Carbo-Ca2+ guard column of 4 mm x 3 mm diameter209

(Phenomenex). Temperature of the column was set at 80°C using a G1316A210

thermostarted column compartment. The mobile phase used was HPLC-grade water at a211

flow rate of 0.6 ml/min (Giné Bordonaba and Terry, 2008). The presence and abundance212

of the selected sugars was calculated by comparison of peak area with peak of known213

standards using ChemStation Rev. B.02.01.214

215

2.3.4. Extraction and HPLC quantification of phenolic compounds216

217

Phenolic acids were extracted and quantified using a method described elsewhere by218

(Magwaza et al., 2012). Briefly, a 150 mg of freeze dried rind powder was dissolved into219

3 mL 70:29.5:0.5 (methanol:H2O:HCL). Samples were extracted at 35°C in water bath220

for 30 minutes, agitated for 30s every 5 minutes and the flocculate filtered through a 0.2221

µm syringe filter. Phenolic acid concentrations were determined using the HPLC system222

equipped with an Agilent DAD G1315B/G1365G photodiode array with multiple223

wavelength detector.224

225
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2.3.5. Determination of antioxidant capacity226

227

Antioxidant capacity was measured on freeze-dried samples following the method by228

Crespo et al. (2010). The absorbance of prepared sample solutions was measured229

spectrophotometrically at 517 nm using a Camspec M501 UV/vis spectrometer.230

Basically, the antioxidant capacity determination with 2,2-diphenyl-1-picrylnhydrazyl231

(DPPH) is based on the properties of DPPH, which its radical form has an absorption232

band at 517 nm and disappears upon reduction by an antiradical compound.233

234

2.4. Data analysis235

236

2.4.1. Statistical analysis237

238

Statistical analyses carried out using SPSS 10.0 for Windows (SPSS Inc. Chicago, USA).239

Data was subjected to analysis of variance (ANOVA). Least significant difference values240

(LSD; P=0.05) were calculated for mean separation (Landahl et al., 2009).241

242

2.4.2. NIRS analysis, calibration development and validation243

244

Before analysis, the reflectance spectra in Indico format (Indico Pro 5.6 software,245

Analytical Spectral Devices Inc., USA) were transformed to absorbance (log (1/R).246

Calculations of the average of 8 spectra obtained from each fruit, pre-processing and247
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calibration methods were executed using the Unscrambler chemometric software (The248

Unscrambler Version 9.2, Camo Process, SA, Trondheim, Norway).249

250

Several pre-processing methods including, smoothing using moving average and251

Savitzky-Golay methods, full multiple scatter correction (MSC), Savitzky-Golay first252

derivative and second derivative, minimum and maximum normalisation and vector253

normalisation (SVN) were tested to correct light scatter and reduce the changes of light254

path length. After pre-processing trials, the optimal model performance was obtained255

using the Savitzky-Golay second derivative with the polynomial order of 5 and MSC.256

Savitzky-Golay second derivative was used to correct light scattering properties while257

MSC was used to correct for additive, multiplicative effects of the spectra, and pathlength258

variations (Leonardi and Burns, 1999; Gómez et al., 2006).259

260

In order to determine effective wavelength, discriminate fruit from four canopy positions261

using Vis/NIR and to detect outliers, PCA was performed using full cross validation.262

Partial least squares regression (PLSR) was applied to spectral data to develop prediction263

models for each quality attribute. A PLS variant known as partial least squares264

discriminant analysis (PLS-DA) was also used in order to classify fruit from different265

canopy positions according to the spectra. A method by Chen et al. (2011) was used in266

the application of PLS-DA. Briefly, fruit from each of the canopy positions in the267

calibration set was assigned a dummy variable as a reference value (outside = 1, outside268

bagged = 2, inside = 3 and inside bagged = 4). In addition, due to discrete nature of RBD269

scores, samples were assigned a binary dummy variable as a reference value, which was270
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an arbitrary number whether the sample belongs to a particular position or not. RBD271

affected fruit were set as reference data one, while unaffected fruit were assigned to 1272

(Teerachaichayut et al., 2011).273

274

To develop PLS models, the dataset was randomly separated into two subsets, 60% for275

calibration and 40% for test set validation. The regression statistics of developed models276

was described by the value of the root mean square error of calibration (RMSEC), root277

mean square error of validation or prediction (RMSEP), the Perason correlation278

correlation coefficients (R) between predicted and observed reference values, number of279

latent variables (LVs), and the residual predictive deviation (RPD), described by280

Williams and Sobering (1996) as the ratio of the standard deviation of the reference data281

for the validation set to the RMSEP. The ideal model should have higher R and RPD282

values as well as lower RMSEC and RMSEP values. The optimal number of LVs was283

determined as the minimum number of LVs corresponding to the first lowest value of the284

RMSEC or RMSEP from the plot of the RMSEC or RMSEP for increasing number of285

LVs (Davey et al. 2009). The stability of the calibration model was tested by286

interchanging validation and calibration data sets and checking that the differences in the287

regression statistics obtained were small (Alvarez-Guerra et al., 2010).288

289

3. Results and discussion290

291
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3.1.Rind breakdown disorder and biochemical profile of fruit from different canopy292

positions.293

294

Symptoms of rind breakdown disorder were visible on affected fruit after five weeks of295

continuous storage at 8°C. RBD was significantly affected by preharvest manipulation of296

sunlight exposure (Table 1). Outside fruit had the lowest susceptibility to develop the297

disorder compared to other preharvest treatments. Fruit position within the canopy on its298

own did not show a significant difference on fruit susceptibility to RBD. However,299

exclusion of sunlight by bagging fruit resulted in increased fruit susceptibility but only300

showed a significant difference on fruit located inside the canopy. These findings are301

consistent with those observed by Almela et al. (1992). In their study, these authors302

established that the sensitivity of fruit to development of rind spots related to RBD in303

‘Fortune’ mandarins was influenced by different microclimates. Similar to observations304

reported by Cronje et al. (2011), fruit position within the canopy affected rind colour305

index (CI). Fruit borne on the outside of the tree canopy had the highest CI and hence306

were more orange while shaded fruit had pale, yellow rinds.307

308

Foregoing research suggests that rind water status is a factor prevailing in the309

susceptibility of citrus fruit to rind physiological disorders (Cohen et al., 1994; Alférez310

and Burns (2004). In this study, fruit from the bagged treatments, both inside and outside311

of the canopy, were characterized by high postharvest weight loss, and this was312

essentially due to water loss by transpiration, as this account for 90% of total weight loss313

(Ben-Yehoshua, 1969). Water loss from the fruit results from a water pressure gradient314
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prevailing between the fruit rind, which is close to saturation with water, and the less315

saturated outer atmosphere (Ben-Yehoshua et al., 1994; Macnish et al., 1997).316

317

Fruit position within the canopy also had a significant influence on rind biochemical318

properties. Results in Table 1 showed that outside fruit had higher TSS, dry matter319

content, glucose and total phenolic acid concentrations compared to shaded samples. The320

effect of canopy position on fruit quality was documented by (Barry et al., 2000) who321

reported that fruit from the south western top part of the canopy had significantly higher322

soluble solids contents, lower titratable acid content and higher ratio than fruit borne in323

the north east bottom position. In this study, bagged fruit from outer portion of the324

canopy had significantly higher glucose concentration of 92.03 mg/g DW compared to325

inside fruit, which had 66.92 mg/g DW glucose concentration. On the contrary, sucrose,326

and total carbohydrate of bagged fruit from inside the canopy were significantly higher in327

relation to other three positions. It was therefore noteworthy that these fruit also had328

highest susceptibility to RBD.329

330

In addition to carbohydrate contents, phenolic acid concentration and antioxidant331

capacity were affected by fruit exposure to sunlight. Unbagged samples from the inside332

and outside position had relatively higher phenolic acid content of 39.29 and 37.65 mg/g333

DW when compared to outside bagged and inside bagged samples which had 33.48 and334

34.68 mg/g DW, respectively. Moreover, the antioxidant activity of inside bagged335

samples, i.e. fruit with the highest RBD, was much higher than those with low RBD336

disorder. It has reported previously that the presence antioxidant species or the lack337
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thereof could be implicated to the development of various postharvest disorders including338

non-chilling peel pitting in ‘Navelate’ oranges (Cajuste and Lafuente, 2007). The results339

presented above are in accord with the notion that manipulating light levels around an340

individual fruit reduces rind condition and susceptibility to the disorder. Pearson341

correlation analysis between physico-chemical properties and RBD development had342

very low correlation coefficients which serve to prove the complexity of factors involved343

in the development of this disorder. Furthermore, the lack of a specific threshold values344

below or above which all fruit become affected and above or below which all fruit stay345

healthy suggests that several preharvest and postharvest factors also play a role.346

347

3.2.Vis/NIR spectroscopy348

349

3.2.1. Distribution of prediction and validation reference data350

351

In this study, reference data set was partitioned into the calibration (60% of n) and352

validation (40% of n) set. Table 2 shows the distributional statistics for reference datasets353

used in calibration and test validation. The reference measurements of all parameters in354

calibration and validation were fairly normally distributed round the means. Although the355

selection method for calibration and validation was random, validation data set was356

scrutinised to ensure that the validation data sets were confined within a boundary of the357

calibration set. The interpretation of calibration results depends greatly on the precision358

of the determined reference data and enough variation in both calibration and validation359

data (Lu et al. 2006). As is apparent in the range and CV% values of the data presented,360
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the calibration and validation values of the sample quality parameters cover a large range,361

which is helpful for developing calibration models for NIR spectroscopy (Clément et al.362

2008). For instance, the mean concentration of sucrose values used for calibration and363

validation were 101.40 and 78.81 mg/g DW with standard deviation of 43.27 and 34.15364

mg/g DW, respectively. The range of total sugars in the calibration set was from 121.91365

to 511.11 mg/g DW and the range of validation set was from 141.91 to 492.28 mg/g DW366

with corresponding CV % of 29.38 and 36.31%, respectively.367

368

3.2.2. Spectrum description369

370

The absorbance spectra presented in Figure 1(a) portrays the typical spectra obtained371

from intact “Nules Clementine” mandarins subjected to different preharvest treatments.372

Each line represents the average spectra from 20 fruit in each preharvest treatment.373

Spectral features were similar to those obtained by Gómez and co-workers (2006). Strong374

absorption bands around 670, 740, 980, 1200, 1450, 1780 and 1930 nm were observed.375

Absorption at these wavebands were, respectively, due to red absorbing pigments,376

particularly chlorophyll (Clément et al. 2008), third overtone of O-H stretching, second377

overtone of H-O-H stretching modes of water, second and first overtones of C-H378

stretching as well as the third overtone of O-H, C-H and C-H2 deformation associated379

with sugar solution reported by Kawano et al. (1993) and Golic et al. (2003). It should be380

noted that the average spectra of inside bagged fruit (with highest RBD) had a distinctly381

stronger absorbance in the waveband between 600 and 900 nm. This was similar to382

results obtained by Zheng et al. (2010) for prediction of olleocelosis disorder, where large383
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variations in absorbance spectra were observed among fruit with different sensitivities in384

the same waveband. Since the intensities of reflectance vary with concentrations of385

biochemical constituents of the sample (Williams and Norris, 2001) this band may386

possibly be related to fruit sensitivity to rind physiological disorders such as oleocellosis387

and RBD.388

389

3.2.3. Pre-processing methods390

391

The spectra of solid samples such as fruit are influenced by physical properties such as392

shape, size, path length, etc. (Leonardi and Burns 1999), which create noise and393

determine light scattering properties. As a common practice in NIRS, obtained spectra394

was subjected to several pre-processing methods and the suitable pre-processing methods395

were selected. Results presented in Table 3 show that Savitzky-Golay second derivative396

with the fifth order polynomial (Figure 1(b)) provided the best results for the PCA397

classification and PLS model for predicting RBD. MSC (Figure 1(c)) gave best results for398

PLS prediction of physico-chemical properties such as h, CI, weight loss, dry matter399

content, and carbohydrate concentrations as well PLS-DA classification by preharvest400

treatments.401

402

3.2.4. Vis/NIR- based PCA and PLS classification models403

404

Individual spectra from 8 positions within the fruit and the average spectra were tested to405

develop PCA and PLD-DA classification models. Average spectra showed better models406

than individual spectra; and thus subsequent analyses were based on average spectra.407
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PCA was performed on Vis/NIR spectra to compare spectral characteristics of fruit from408

different preharvest treatments. The PCA applied to the spectra using Savitzky Golay409

second derivative pre-processing revealed better grouping of the samples than other410

tested pre-processing methods. The data distribution in the PCA score plot presented in411

Figure 2 displayed four clusters that could easily be identified. These clusters allowed412

distinction between fruit from different preharvest treatments. The first two principal413

components (PC) accounted for 68.0 % of the total variability, PC1 explains the 53.0 %414

of the variance and PC2 explained 15.0 % of the variance. The effective wavelength band415

for this classification was from 350 to 1200 nm with a strong absorption at 670 nm416

influenced by chlorophyll and three at 740, 980, 1200 nm corresponding to water (O-H)417

functional groups. From this, it could be concluded that a combination of colour and418

moisture content of the rind play an important role in discriminating from different419

positions of the canopy.420

421

Spectral data was further subjected to discriminant analysis by assigning fruit from each422

canopy positions to a dummy variable (1, 2, 3 and 4 for outside, outside bagged, inside423

bagged and inside, respectively. Figure 3 depicts performance of the PLS-DA model to424

classify fruit based on their origin within the tree canopy using full spectral range (350-425

2500 nm) and MSC spectral pre-processing. The prediction accuracy determined using 24426

test set for validation was high (r = 0.971, RMSEP = 0.304).427

428

3.2.5. Vis/NIR- based PLS prediction models429

430
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Table 3 shows summary statistics for calibration and validation results for the prediction431

of different physico-chemical properties with PLS models. After testing different432

wavelength ranges based on observed peaks and information provided in the literature,433

wavelength bands that gave the lowest RMSEC and RMSEP were selected to develop434

calibration models for each physico-chemical property. As would be expected, models435

for colour parameters (h and CI) were developed using visible range (350-700 nm) of436

the spectrum, whereas RBD model was developed with the region between 350-1000 nm.437

This was in accordance with the range used by Zheng et al. (2010) to develop models for438

predicting susceptibility of citrus fruit to oleocellosis, another rind physiological disorder.439

440

Prediction models for sucrose, fructose, glucose, total sugars, TSS, dry matter and water441

loss were developed using wavelength range between 900 to 1800 nm. According to the442

absorption bands of common foods constituents provided by Williams and Norris (2001),443

all these biochemical components have absorption bands in this spectral region. Results444

obtained in this study are similar to previous studies suggesting that the range from 350-445

1800 nm is suitable for predicting colour parameters (Sun et al., 2009), dry matter446

(Guthrie et al., 2005a, b), sucrose, fructose, glucose (Tewari et al., 2008) and sugar447

content (Liu et al., 2010).448

449

Models for predicting quality parameters such as colour index, h, DM and water loss450

showed significantly high performance, with predictive R values ranging from 0.91 to451

0.98 and RPD ranging from 2.34 to 4.13 for water loss and CI, respectively (Figure 5).452

NIR calibration and validation results demonstrated that sugars, dry matter, colour index453
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and mass loss were predicted with significant accuracy. The prediction performance for454

sugars (sucrose, fructose, glucose, and total sugars) was high with R of 0.88, 0.94, 0.95,455

and 0.95 and corresponding RMSEP values of 24.36, 11.41, 11.58, 31.04 mg/g DW,456

respectively (Figure 6). Although the accuracy is slightly lower, these results were457

comparable to those reported in the literature by Tewari et al. (2008) for the prediction of458

sucrose, fructose and glucose of grapefruit.459

460

As suggested by Davey et al. (2009) and Saeys et al. (2005), although the correlation461

between NIR predicted and reference values is high, it is also very critical to verify the462

accuracy of the model by referring to the RPD values. These authors stated that RPD463

values below 1.5 are considered unusable, those between 1.5 and 2.0 are suitable for464

rough prediction, those between 2.0 and 2.5 are suitable for quantitative predictions,465

while RPD values between 2.5 and above 3.0 are respectively considered good and466

excellent prediction models. The low RPD values, 0.30 and 1.40 for RBD and sucrose,467

respectively, clearly indicate poor accuracy of these models. The poor accuracy of these468

models could be attributed to high variation of these parameters in both calibration and469

test set data. Furthermore, the low predictability of sucrose could possibly results due to470

the difference in molecular weight of sucrose (MW=342.30 g/mol) compared to fructose471

and glucose (MW=180.16) (Golic et al., 2003). This difference in molecular weight is472

such that there are 1.89 times fewer number of sucrose molecules than glucose and473

fructose in the same weight of sample. Therefore, the intensity of the bands associated474

with hydrogen bonding is smaller in sucrose than in glucose and fructose.475

476



22

The complexity of biological factors involved in the development of RBD complicated477

the development of an acceptable model for predicting the disorder. However, the high478

ability of Vis/NIR to classify fruit based on their origin within the canopy using PLS-DA479

could have online practical interest for online application. Another reason for the poor480

prediction model for RBD is that calibration and test set also contained a large proportion481

of samples in which RBD didn’t develop. The inability to generate the disorder due to482

unfavourable conditions to develop the disorder under this type of study occurs. To correct483

this problem in future studies, it will be necessary to increase sample size for both calibration484

and validation sets. This is to ensure that the distribution of the disorder is wide, normal485

around the mean and that it represents distribution present in a harvested population of486

mandarin fruit (Davey et al. 2009).487

488

4. Conclusions489

490

In this study, the positional effects within the canopy and bagging were significant in491

altering rind biochemical properties. Outside unbagged fruit had higher rind sugar,492

phenolic acids and dry matter content and lower RBD index than inside and bagged fruit.493

The data distribution in the PCA and PLS-DA models displayed four clusters that could494

easily be identified. These clusters allowed distinction between fruit from different495

preharvest treatments. NIR calibration and validation results demonstrated that sugars,496

dry matter, colour index and mass loss were predicted with significant accuracy. The497

exploration of the statistics of the developed models revealed the high potential that498

Vis/NIR spectroscopy has to non-destructively detect rind biochemical profile and hence499

susceptibility to RBD. The good correlation between spectral information and500
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biochemical information demonstrated the potential of Vis/NIR as a non-destructive tool501

to predict fruit susceptibility to RBD.502
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Table 1: Physico-chemical profile of fruit from different canopy positions. Different676

alphabets next to figures (mean and standard error of the mean) in the same row are677

significantly different.678

Quality Parameter Canopy position

Outside Outside bagged Inside Inside bagged

h 67.34±0.58ns 75.50±1.46ns 62.94±11.32ns 74.01±0.97ns

CI 6.12±0.19b 3.62±0.38a 3.65±0.57a 3.99±0.27a

Mass (g) 107.63±4.68b 104.89±4.28b 89.29±4.95a 107.61±6.38b

RBDI 0.00±0.00a 0.05±0.03a 0.04±0.04a 0.19±0.05b

WL (g) 9.51±0.42ab 13.02±1.76bc 7.76±0.58a 13.62±1.67c

TSS (°Brix) 13.71±0.24b 11.89±0.28a 12.11±0.27a 11.94±0.25a

DMC (%) 30.00±0.78b 26.98±0.51a 28.780.96a 26.99±0.79ab

Sucrose (mg/g DW) 95.31±6.07b 93.59±9.51b 63.30±8.65a 114.94±12.51b

Glucose (mg/g DW) 92.03±5.29b 85.44±8.94ab 66.92±6.97a 77.09±8.50ab

Fructose (mg/g DW) 126.48±5.19ab 130.21±9.76b 100.65±8.52a 122.26±9.71ab

Total Sugars (mg/g DW) 313.82±11.58b 309.23±25.05b 230.88±22.82a 314.29±27.70b

Total phenolic acids (mg/g DW) 39.29±0.86b 33.48±1.10a 37.65±0.85b 34.68±1.25a

DPPH (µmol trolox eq./g DW) 0.95±0.04b 1.23±0.18b 0.50±0.11a 1.36±0.17b

679

680

681

682

683

684

685

686
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Table 2: Mean, standard deviation (SD), range and coefficient of variation (CV %) for687

calibration (60% of n) and validation (40% of n) subsets of mandarin fruit.688

Quality parameter Calibration data set Validation data set

Mean±SD Range CV% Mean±SD Range CV%

h° 73.14±5.11 63.53-89.27 7.05% 72.28±6.27 64.51-85.71 8.54%

CI 4.52±1.47 1.25-7.49 32.59% 4.29±1.76 0.07-7.04 41.12%

RBDI 0.09±0.18 0.00-0.56 205.84% 0.05±0.10 0.00-0.33 187.75%

Mass (g) 107.90±22.87 67.40-153.60 21.20% 94.58±15.07 70.7-123.1 15.93%

WL (g) 11.33±5.21 4.51-28.53 45.99% 10.83±6.45 4.87-25.84 59.52%

DMC (%) 27.85±3.14 22.84-35.41 11.28% 28.56±3.29 23.54-35.71 11.50%

Sucrose (mg/g DW) 101.40±43.27 35.17-207.91 42.66% 78.81±34.15 42.85-144.30 43.34%

Glucose (mg/g DW) 83.87±30.11 22.19-152.1 35.91% 75.69±32.59 36.01-127.60 43.06%

Fructose (mg/g DW) 124.30±33.52 53.72-195.9 26.96% 114.70±37.38 59.38-182.48 32.62%

Total Sugars (mg/g DW) 309.60±90.97 121.91-511.11 29.38% 269.17±97.74 141.91-492.28 36.31%

PLS-DA dummy variables 2.34±1.07 1.00-4.00 45.79% 2.63±1.17 1.00-4.00 44.67%

689

690

691

692

693

694

695

696

697

698

699

700
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Table 3: An overview of statistics obtained during calibration and validation of models701

for individual quality parameters.702

Quality parameter Calibration model Validation model

LV Prepr R RMSEC RPD R RMSEP RPD Info. Region (nm)

h° 3 MSC 0.97 1.31 3.91 0.97 1.66 3.78 350-700

CI 3 MSC 0.98 0.37 3.93 0.98 0.43 4.13 350-700

RBD (binary scores) 5 2nd der 0.77 0.27 0.67 0.70 0.34 0.30 350-1000

WL (g) 10 MSC 0.92 2.01 2.59 0.91 2.76 2.34 900-1700

DMC (%) 8 MSC 0.98 0.68 4.65 0.96 0.92 3.57 900-1700

Sucrose (mg/g DW) 10 MSC 0.96 12.38 3.50 0.88 24.36 1.40 900-1700

Glucose (mg/g DW) 10 MSC 0.95 9.18 3.28 0.94 11.41 2.86 900-1700

Fructose (mg/g DW) 14 MSC 0.98 6.33 5.30 0.95 11.58 3.23 900-1700

Total Sugars (mg/g DW) 10 MSC 0.94 30.42 2.99 0.95 31.04 3.15 900-1700

PLS-DA dummy variables 10 MSC 0.98 0.20 5.25 0.97 0.30 3.85 350-2500

703

704

705

706

707

708

709

710

711

712

713

714
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Figure 1: Typical average Vis/NIR spectra (350-2500 nm) of intact “Nules Clementine”733

mandarins obtained from fruit harvested from four different preharvest treatments;734

outside (deep blue line), outside bagged (red line), inside (inside), and inside bagged735

(light blue line). (a) Without pre-processing; (b) multiple scatter correction; (c) Savitsky-736

Golay first derivative of the spectra.737
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Figure 2: PCA plot for the two PC factors showing spectral ability to sort based on their746

origin within the tree canopy.747
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Figure 3: PLS-DA models showing Vis/NIR spectral ability to predict fruit origin within756

the tree canopy.757
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Figure 4: PLS scatter plot showing Vis/NIR model performance to classify fruit based on768

the occurrence of RBD.769
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Figure 5: Scatter plots of Vis/NIR predicted versus measure values of hue angle (a),804

colour index (b), dry matter (%) (c), and weight/water loss (grams) (d).805
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Figure 6: Scatter plots for Vis/NIR predicted versus measure values of sucrose (a),828

glucose (b), fructose (c), and total sugars (d). All results are expressed in mg/g DW.829
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