4,536 research outputs found
Characterization of light production and transport in tellurium dioxide crystals
Simultaneous measurement of phonon and light signatures is an effective way to reduce the backgrounds and increase the sensitivity of CUPID, a next-generation bolometric neutrinoless double-beta decay (0νββ) experiment. Light emission in tellurium dioxide (TeO2) crystals, one of the candidate materials for CUPID, is dominated by faint Cherenkov radiation, and the high refractive index of TeO2 complicates light collection. Positive identification of 0νββ events therefore requires high-sensitivity light detectors and careful optimization of light transport. A detailed microphysical understanding of the optical properties of TeO2 crystals is essential for such optimization. We present a set of quantitative measurements of light production and transport in a cubic TeO2 crystal, verified with a complete optical model and calibrated against a UVT acrylic standard. We measure the optical surface properties of the crystal, and set stringent limits on the amount of room-temperature scintillation in TeO2 for β and α particles of 5.3 and 8 photons/MeV, respectively, at 90% confidence. The techniques described here can be used to optimize and verify the particle identification capabilities of CUPID
Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators
The CHErenkov / Scintillation Separation experiment (CHESS) has been used to
demonstrate the separation of Cherenkov and scintillation light in both linear
alkylbenzene (LAB) and LAB with 2g/L of PPO as a fluor (LAB/PPO). This is the
first such demonstration for the more challenging LAB/PPO cocktail and improves
on previous results for LAB. A time resolution of 338 +/- 12 ps FWHM results in
an efficiency for identifying Cherenkov photons in LAB/PPO of 70 +/- 3% and 63
+/- 8% for time- and charge-based separation, respectively, with scintillation
contamination of 36 +/- 5% and 38 +/- 4%. LAB/PPO data is consistent with a
rise time of 0.75 +/- 0.25 ns
Methodology for urban rail and construction technology research and development planning
A series of transit system visits, organized by the American Public Transit Association (APTA), was conducted in which the system operators identified the most pressing development needs. These varied by property and were reformulated into a series of potential projects. To assist in the evaluation, a data base useful for estimating the present capital and operating costs of various transit system elements was generated from published data. An evaluation model was developed which considered the rate of deployment of the research and development project, potential benefits, development time and cost. An outline of an evaluation methodology that considered benefits other than capital and operating cost savings was also presented. During the course of the study, five candidate projects were selected for detailed investigation; (1) air comfort systems; (2) solid state auxiliary power conditioners; (3) door systems; (4) escalators; and (5) fare collection systems. Application of the evaluation model to these five examples showed the usefulness of modeling deployment rates and indicated a need to increase the scope of the model to quantitatively consider reliability impacts
Parametric Excitation and Squeezing in a Many-Body Spin System
We demonstrate a new method to coherently excite and control the quantum spin
states of an atomic Bose gas using parametric excitation of the collective spin
by time varying the relative strength of the Zeeman and spin-dependent
collisional interaction energies at multiples of the natural frequency of the
system. Compared to the usual single-particle quantum control techniques used
to excite atomic spins (e.g. Rabi oscillations using rf or microwave fields),
the method demonstrated here is intrinsically many-body, requiring
inter-particle interactions. While parametric excitation of a classical system
is ineffective from the ground state, we show that in our quantum system,
parametric excitation from the quantum ground state leads to the generation of
quantum squeezed states
Experimental and computational characterization of a modified GEC cell for dusty plasma experiments
A self-consistent fluid model developed for simulations of micro- gravity
dusty plasma experiments has for the first time been used to model asymmetric
dusty plasma experiments in a modified GEC reference cell with gravity. The
numerical results are directly compared with experimental data and the
experimentally determined dependence of global discharge parameters on the
applied driving potential and neutral gas pressure is found to be well matched
by the model. The local profiles important for dust particle transport are
studied and compared with experimentally determined profiles. The radial forces
in the midplane are presented for the different discharge settings. The
differences between the results obtained in the modified GEC cell and the
results first reported for the original GEC reference cell are pointed out
Dynamic stabilization of a quantum many-body spin system
We demonstrate dynamic stabilization of an unstable strongly interacting
quantum many-body system by periodic manipulation of the phase of the
collective states. The experiment employs a spin-1 atomic Bose condensate
initialized to an unstable (hyperbolic) fixed point of the spin-nematic phase
space, where subsequent free evolution gives rise to squeezing and quantum spin
mixing. To stabilize the system, periodic microwave pulses are applied that
manipulate the spin-nematic many-body fluctuations and limit their growth. The
range of pulse periods and phase shifts for which the condensate can be
stabilized is measured and the resulting stability diagram compares well with a
linear stability analysis of the problem.Comment: Main text 6 pages, 4 figures; Supplement 5 pages, 1 figur
Footprints of Statistical Anisotropies
We propose and develop a formalism to describe and constrain statistically
anisotropic primordial perturbations. Starting from a decomposition of the
primordial power spectrum in spherical harmonics, we find how the temperature
fluctuations observed in the CMB sky are directly related to the coefficients
in this harmonic expansion. Although the angular power spectrum does not
discriminate between statistically isotropic and anisotropic perturbations, it
is possible to define analogous quadratic estimators that are direct measures
of statistical anisotropy. As a simple illustration of our formalism we test
for the existence of a preferred direction in the primordial perturbations
using full-sky CMB maps. We do not find significant evidence supporting the
existence of a dipole component in the primordial spectrum.Comment: 26 pages, 5 double figures. Uses RevTeX
From Feynman Proof of Maxwell Equations to Noncommutative Quantum Mechanics
In 1990, Dyson published a proof due to Feynman of the Maxwell equations
assuming only the commutation relations between position and velocity. With
this minimal assumption, Feynman never supposed the existence of Hamiltonian or
Lagrangian formalism. In the present communication, we review the study of a
relativistic particle using ``Feynman brackets.'' We show that Poincar\'e's
magnetic angular momentum and Dirac magnetic monopole are the consequences of
the structure of the Lorentz Lie algebra defined by the Feynman's brackets.
Then, we extend these ideas to the dual momentum space by considering
noncommutative quantum mechanics. In this context, we show that the
noncommutativity of the coordinates is responsible for a new effect called the
spin Hall effect. We also show its relation with the Berry phase notion. As a
practical application, we found an unusual spin-orbit contribution of a
nonrelativistic particle that could be experimentally tested. Another practical
application is the Berry phase effect on the propagation of light in
inhomogeneous media.Comment: Presented at the 3rd Feynman Festival (Collage Park, Maryland,
U.S.A., August 2006
- …
