963 research outputs found

    Integrated signaling pathway and gene expression regulatory model to dissect dynamics of <em>Escherichia coli </em>challenged mammary epithelial cells

    Get PDF
    AbstractCells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression.The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling.Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments

    Polyubiquitin chain assembly and organization determine the dynamics of protein activation and degradation

    Get PDF
    Protein degradation via ubiquitination is a major proteolytic mechanism in cells. Once a protein is destined for degradation, it is tagged by multiple ubiquitin (Ub) molecules. The synthesized polyubiquitin chains can be recognized by the 26S proteosome where proteins are degraded. These chains form through multiple ubiquitination cycles that are similar to multi-site phosphorylation cycles. As kinases and phosphatases, two opposing enzymes (E3 ligases and deubiquitinases DUBs) catalyze (de)ubiquitination cycles. Although multi-ubiquitination cycles are fundamental mechanisms of controlling protein concentrations within a cell, their dynamics have never been explored. Here, we fill this knowledge gap. We show that under permissive physiological conditions, the formation of polyubiquitin chain of length greater than two and subsequent degradation of the ubiquitinated protein, which is balanced by protein synthesis, can display bistable, switch-like responses. Interestingly, the occurrence of bistability becomes pronounced, as the chain grows, giving rise to “all-or-none” regulation at the protein levels. We give predictions of protein distributions under bistable regime awaiting experimental verification. Importantly, we show for the first time that sustained oscillations can robustly arise in the process of formation of ubiquitin chain, largely due to the degradation of the target protein. This new feature is opposite to the properties of multi-site phosphorylation cycles, which are incapable of generating oscillation if the total abundance of interconverted protein forms is conserved. We derive structural and kinetic constraints for the emergence of oscillations, indicating that a competition between different substrate forms and the E3 and DUB is critical for oscillation. Our work provides the first detailed elucidation of the dynamical features brought about by different molecular setups of the polyubiquitin chain assembly process responsible for protein degradation

    Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses

    Get PDF
    We show theoretically and experimentally a mechanismbehind the emergence of wide or bimodal protein distributions in biochemical networks with nonlinear input-output characteristics (the dose-response curve) and variability in protein abundance. Large cell-to-cell variation in the nonlinear dose-response characteristics can be beneficial to facilitate two distinct groups of response levels as opposed to a graded response. Under the circumstances that we quantify mathematically, the two distinct responses can coexist within a cellular population, leading to the emergence of a bimodal protein distribution. Using flow cytometry, we demonstrate the appearance of wide distributions in the hypoxia-inducible factor-mediated response network in HCT116 cells. With help of our theoretical framework, we perform a novel calculation of the magnitude of cell-to-cell heterogeneity in the dose-response obtained experimentally

    The cost-effectiveness of trivalent and quadrivalent influenza vaccination in communities in South Africa, Vietnam and Australia

    Get PDF
    BACKGROUND: To inform national healthcare authorities whether quadrivalent influenza vaccines (QIVs) provide better value for money than trivalent influenza vaccines (TIVs), we assessed the cost-effectiveness of TIV and QIV in low-and-middle income communities based in South Africa and Vietnam and contrasted these findings with those from a high-income community in Australia. METHODS: Individual based dynamic simulation models were interfaced with a health economic analysis model to estimate the cost-effectiveness of vaccinating 15% of the population with QIV or TIV in each community over the period 2003-2013. Vaccination was prioritized for HIV-infected individuals, before elderly aged 65+ years and young children. Country or region-specific data on influenza-strain circulation, clinical outcomes and costs were obtained from published sources. The societal perspective was used and outcomes were expressed in International(I (I) per quality-adjusted life-year (QALY) gained. RESULTS: When compared with TIV, we found that QIV would provide a greater reduction in influenza-related morbidity in communities in South Africa and Vietnam as compared with Australia. The incremental cost-effectiveness ratio of QIV versus TIV was estimated at I4183/QALYinSouthAfrica,I4183/QALY in South Africa, I1505/QALY in Vietnam and I$80,966/QALY in Australia. CONCLUSIONS: The cost-effectiveness of QIV varied between communities due to differences in influenza epidemiology, comorbidities, and unit costs. Whether TIV or QIV is the most cost-effective alternative heavily depends on influenza B burden among subpopulations targeted forvaccination in addition to country-specific willingness-to-pay thresholds and budgetary impact

    Psychopathology and psychosocial functioning among young people with first-episode psychosis and/or first-presentation borderline personality disorder.

    Get PDF
    BACKGROUND One in five young people with first-episode psychosis (FEP) also presents with borderline personality disorder (BPD) features. Among people diagnosed with BPD, auditory verbal hallucinations occur in 29-50 % and delusions in 10-100 %. Co-occurrence of psychotic symptoms and BPD is associated with greater clinical severity and greater difficulty accessing evidence based FEP care. This study aimed to investigate psychotic symptoms and psychosocial functioning among young people presenting to an early intervention mental health service. METHOD According to the presence or absence of either FEP or BPD, 141 participants, aged 15-25 years, were assigned to one of four groups: FEP, BPD, combined FEP + BPD, or clinical comparison (CC) participants with neither FEP nor BPD. Participants completed semi-structured diagnostic interviews and interviewer and self-report measures of psychopathology and psychosocial functioning. RESULTS The FEP + BPD group had significantly more severe psychopathology and poorer psychosocial functioning than the FEP group on every measure, apart from intensity of hallucinations. Comparing the FEP or BPD groups, the BPD group had greater psychopathology, apart from intensity of psychotic symptoms, which was significantly greater in the FEP group. These two groups did not significantly differ in their overall psychosocial functioning. Compared with CC young people, both the FEP + BPD and BPD groups differed significantly on every measure, with medium to large effect sizes. CONCLUSIONS Young people with co-occurring FEP and BPD experience more severe difficulties than young people with either diagnosis alone. This combination of psychosis and severe personality pathology has been longitudinally associated with poorer outcomes among adults and requires specific clinical attention

    Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relative contribution of lean and fat to the determination of bone mineral density (BMD) in postmenopausal women is a contentious issue. The present study was undertaken to test the hypothesis that lean mass is a better determinant of BMD than fat mass.</p> <p>Methods</p> <p>This cross-sectional study involved 210 postmenopausal women of Vietnamese background, aged between 50 and 85 years, who were randomly sampled from various districts in Ho Chi Minh City (Vietnam). Whole body scans, femoral neck, and lumbar spine BMD were measured by DXA (QDR 4500, Hologic Inc., Waltham, MA). Lean mass (LM) and fat mass (FM) were derived from the whole body scan. Furthermore, lean mass index (LMi) and fat mass index (FMi) were calculated as ratio of LM or FM to body height in metre squared (m<sup>2</sup>).</p> <p>Results</p> <p>In multiple linear regression analysis, both LM and FM were independent and significant predictors of BMD at the spine and femoral neck. Age, lean mass and fat mass collectively explained 33% variance of lumbar spine and 38% variance of femoral neck BMD. Replacing LM and FM by LMi and LMi did not alter the result. In both analyses, the influence of LM or LMi was greater than FM and FMi. Simulation analysis suggested that a study with 1000 individuals has a 78% chance of finding the significant effects of both LM and FM, and a 22% chance of finding LM alone significant, and zero chance of finding the effect of fat mass alone.</p> <p>Conclusions</p> <p>These data suggest that both lean mass and fat mass are important determinants of BMD. For a given body size -- measured either by lean mass or height --women with greater fat mass have greater BMD.</p

    Disruption of Telomere Integrity and DNA Repair Machineries by KML001 Induces T Cell Senescence, Apoptosis, and Cellular Dysfunctions

    Get PDF
    T cells in chronic viral infections are featured by premature aging with accelerated telomere erosion, but the mechanisms underlying telomere attrition remain unclear. Here, we employed human CD4 T cells treated with KML001 (a telomere-targeting drug) as a model to investigate the role of telomere integrity in remodeling T cell senescence. We demonstrated that KML001 could inhibit cell proliferation, cytokine production, and promote apoptosis via disrupting telomere integrity and DNA repair machineries. Specifically, KML001-treated T cells increased dysfunctional telomere-induced foci (TIF), DNA damage marker γH2AX, and topoisomerase cleavage complex (TOPcc) accumulation, leading to telomere attrition. Mechanistically, KML001 compromised telomere integrity by inhibiting telomeric repeat binding factor 2 (TRF2), telomerase, topoisomerase I and II alpha (Top1/2a), and ataxia telangiectasia mutated (ATM) kinase activities. Importantly, these KML001-induced telomeric DNA damage and T cell senescent phenotype and machineries recapitulated our findings in patients with clinical HCV or HIV infection in that their T cells were also senescent with short telomeres and thus more vulnerable to KML001-induced apoptosis. These results shed new insights on the T cell aging network that is critical and essential in protecting chromosomal telomeres from unwanted DNA damage and securing T cell survival during cell crisis upon genomic insult
    corecore