16 research outputs found

    Effect of moderate beer consumption (with and without ethanol) on osteoporosis in early postmenopausal women: Results of a pilot parallel clinical trial

    Full text link
    Osteoporosis is a chronic progressive bone disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to an increase in bone fragility and the risk of fractures. A well-known risk factor for bone loss is postmenopausal status. Beer may have a protective effect against osteoporosis associated with its content of silicon, polyphenols, iso-α-acids and ethanol, and its moderate consumption may therefore help to reduce bone loss in postmenopausal women.Accordingly, a 2-year controlled clinical intervention study was conducted to evaluate if a moderate daily intake of beer with (AB) or without alcohol (NAB) could have beneficial effects on bone tissue. A total of 31 postmenopausal women were assigned to three study groups: 15 were administered AB (330 mL/day) and six, NAB (660 mL/day), whereas, the 10 in the control group refrained from consuming alcohol, NAB, and hop-related products. At baseline and subsequent assessment visits, samples of plasma and urine were taken to analyze biochemical parameters, and data on medical history, diet, and exercise were collected. BMD and the trabecular bone score (TBS) were determined by dual-energy X-ray absorptiometry. Markers of bone formation (bone alkaline phosphatase [BAP] and N-propeptide of type I collagen [PINP]) and bone resorption (N-telopeptide of type I collagen [NTX] and C-telopeptide of type I collagen [CTX]) were determined annually.Bone formation markers had increased in the AB and NAB groups compared to the control after the 2-year intervention. However, the evolution of BMD and TBS did not differ among the three groups throughout the study period.Therefore, according to the findings of this pilot study, moderate beer intake does not seem to have a protective effect against bone loss in early post-menopausal women.Copyright © 2022 Trius-Soler, Tresserra-Rimbau, Moreno, Peris, Estruch and Lamuela-Raventós

    The effect of seasoning with herbs on the nutritional, safety and sensory properties of reduced-sodium fermented Cobrançosa cv. table olives

    Get PDF
    This study aimed at evaluating the effectiveness of seasoning Cobrancosa table olives in a brine with aromatic ingredients, in order to mask the bitter taste given by KCl when added to reduced-sodium fermentation brines. Olives were fermented in two different salt combinations: Brine A, containing 8% NaCl and, Brine B, a reduced-sodium brine, containing 4% NaCl + 4% KCl. After the fermentation the olives were immersed in seasoning brines with NaCl (2%) and the aromatic herbs (thyme, oregano and calamintha), garlic and lemon. At the end of the fermentation and two weeks after seasoning, the physicochemical, nutritional, organoleptic, and microbiological parameters, were determined. The olives fermented in the reduced-sodium brines had half the sodium concentration, higher potassium and calcium content, a lower caloric level, but were considered, by a sensorial panel, more bitter than olives fermented in NaCl brine. Seasoned table olives, previously fermented in Brine A and Brine B, had no significant differences in the amounts of protein (1.23% or 1.11%), carbohydrates (1.0% or 0.66%), fat (20.0% or 20.5%) and dietary fiber (3.4% or 3.6%). Regarding mineral contents, the sodium-reduced fermented olives, presented one third of sodium, seven times more potassium and three times more calcium than the traditional olives fermented in 8% NaCl. Additionally, according to the panelists' evaluation, seasoning the olives fermented in 4% NaCl + 4% KCl, resulted in a decrease in bitterness and an improvement in the overall evaluation and flavor. Escherichia coli and Salmonella were not found in the olives produced.info:eu-repo/semantics/publishedVersio

    Beverage specific alcohol intake in a population-based study: Evidence for a positive association between pulmonary function and wine intake

    Get PDF
    BACKGROUND: Lung function is a strong predictor of cardiovascular and all-cause mortality. Previous studies suggest that alcohol exposure may be linked to impaired pulmonary function through oxidant-antioxidant mechanisms. Alcohol may be an important source of oxidants; however, wine contains several antioxidants. In this study we analyzed the relation of beverage specific alcohol intake with forced expiratory volume in one second (FEV(1)) and forced vital capacity (FVC) in a random sample of 1555 residents of Western New York, USA. METHODS: We expressed pulmonary function as percent of predicted normal FEV(1) (FEV(1)%) and FVC (FVC%) after adjustment for height, age, gender and race. To obtain information on alcohol intake we used a questionnaire that reliably queries total alcohol and beverage specific recent (past 30 days) and lifetime alcohol consumption. Results: Using multiple linear regression analysis after adjustment for covariates (pack-years of smoking, weight, smoking status, education, nutritional factors and for FEV(1)%, in addition, eosinophil count), we observed no significant correlation between total alcohol intake and lung function. However, we found positive associations of recent and lifetime wine intake with FEV(1)% and FVC%. When we analyzed white and red wine intake separately, the association of lung function with red wine was weaker than for white wine. CONCLUSION: While total alcohol intake was not related to lung function, wine intake showed a positive association with lung function. Although we cannot exclude residual confounding by healthier lifestyle in wine drinkers, differential effects of alcoholic beverages on lung health may exist

    Adopting a high-polyphenolic diet is associated with an improved glucose profile: prospective analysis within the PREDIMED-plus trial

    Get PDF
    Previous studies suggested that dietary polyphenols could reduce the incidence and complications of type-2 diabetes (T2D); although the evidence is still limited and inconsistent. This work analyzes whether changing to a diet with a higher polyphenolic content is associated with an improved glucose profile. At baseline, and at 1 year of follow-up visits, 5921 participants (mean age 65.0 ± 4.9, 48.2% women) who had overweight/obesity and metabolic syndrome filled out a validated 143-item semi-quantitative food frequency questionnaire (FFQ), from which polyphenol intakes were calculated. Energy-adjusted total polyphenols and subclasses were categorized in tertiles of changes. Linear mixed-effect models with random intercepts (the recruitment centers) were used to assess associations between changes in polyphenol subclasses intake and 1-year plasma glucose or glycosylated hemoglobin (HbA1c) levels. Increments in total polyphenol intake and some classes were inversely associated with better glucose levels and HbA1c after one year of follow-up. These associations were modified when the analyses were run considering diabetes status separately. To our knowledge, this is the first study to assess the relationship between changes in the intake of all polyphenolic groups and T2D-related parameters in a senior population with T2D or at high-risk of developing T2D
    corecore