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Abstract: Previous studies suggested that dietary polyphenols could reduce the incidence and
complications of type-2 diabetes (T2D); although the evidence is still limited and inconsistent. This
work analyzes whether changing to a diet with a higher polyphenolic content is associated with an
improved glucose profile. At baseline, and at 1 year of follow-up visits, 5921 participants (mean
age 65.0 ± 4.9, 48.2% women) who had overweight/obesity and metabolic syndrome filled out a
validated 143-item semi-quantitative food frequency questionnaire (FFQ), from which polyphenol
intakes were calculated. Energy-adjusted total polyphenols and subclasses were categorized in tertiles
of changes. Linear mixed-effect models with random intercepts (the recruitment centers) were used
to assess associations between changes in polyphenol subclasses intake and 1-year plasma glucose or
glycosylated hemoglobin (HbA1c) levels. Increments in total polyphenol intake and some classes
were inversely associated with better glucose levels and HbA1c after one year of follow-up. These
associations were modified when the analyses were run considering diabetes status separately. To
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our knowledge, this is the first study to assess the relationship between changes in the intake of all
polyphenolic groups and T2D-related parameters in a senior population with T2D or at high-risk of
developing T2D.

Keywords: antioxidants; Mediterranean diet; flavonoids; phenolic acids; obesity; glucose; HbA1c;
glycosylated hemoglobin; metabolic syndrome

1. Introduction

The prevalence of diabetes is experiencing an increasing trend, and in 2019 it was
the ninth leading cause of death in the world. Additionally, individuals with diabetes are
more likely to suffer from other noncommunicable diseases such as heart attacks, strokes,
or kidney disease. The expectations for the forthcoming years are not encouraging since
the prevalence of diabetes has been increasing over the past decades. Nevertheless, type-2
diabetes (T2D), the most prevalent type, can be prevented by modifying harmful behavioral
risk factors such as smoking, an unhealthy diet, sedentarism, and alcohol abuse [1]. In the
search for the best dietary pattern to prevent or stop the progression of T2D, plant-based
diets such as Mediterranean-style, vegetarian or vegan diets have been studied in several
prospective observational studies and clinical trials [2].

Healthy plant-based diets are based on the consumption of large amounts of whole
grains, fruits, vegetables, legumes, and nuts, as well as healthy fats such as extra virgin
olive oil, which are associated with a lower risk of developing cardiovascular disease and
T2D [3]. A trait all these foods have in common is a richness in polyphenols, bioactive
plant secondary metabolites with a vast structural diversity. According to their structure,
polyphenols are classified into two main groups: flavonoids and non-flavonoids. Polyphe-
nols in the flavonoid group share the C6-C3-C6 structure and can be divided into the
following subgroups: flavones, flavonols, theaflavins, catechins, proanthocyanidins (poly-
meric forms), flavanones, anthocyanidins, and isoflavones, whereas the non-flavanoids are
classified as phenolic acids, lignans, and stilbenes [4].

Protective effects of polyphenols against the incidence and complications of T2D
are supported by mechanistic studies conducted in animals [5] as well as clinical and
epidemiological studies [6], although the available evidence is still limited and inconsistent.
Furthermore, no previous study has examined the association between changes in the intake
of all polyphenolic groups and subgroups and T2D-related parameters in a population with
or at high-risk of T2D. The aim of the present work was to determine whether changing
to a high polyphenol diet is associated with an improved glucose profile. Due to the
heterogeneity of polyphenols in terms of bioavailability and metabolism, they were studied
in separate groups.

2. Materials and Methods
2.1. Study Design and Participants

The present study is a prospective cohort analysis conducted in the context of the
PREDIMED-Plus trial [7,8], an ongoing six-year multicenter, parallel group, randomized,
lifestyle intervention study involving 6874 participants enrolled in 23 recruitment centers
in Spain from October 2013 to December 2016. Eligible participants were men (aged
55–75 years) and women (aged 60–75 years) with a body mass index (BMI) between 27 and
40 kg/m2 and the presence of three or more components of metabolic syndrome (updated
harmonized criteria of the International Diabetes Federation and the American Heart
Association and National Heart, Lung and Blood Institute) [9].

Participants were randomly assigned, in a 1:1 ratio, to one of two groups: an in-
tensive weight-loss intervention group (based on an energy-restricted Mediterranean
diet, individualized physical activity plan, and behavioral support) or a control group
(based on the traditional Mediterranean diet and usual health care). The detailed study
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protocol and eligible and exclusion criteria can be found elsewhere [8,10], including at
http://predimedplus.com (accessed on 10 January 2022).

For the present analysis, 777 participants with missing dietary data and 176 with
extreme energy intakes (<500 or >3500 for women and <800 and >4000 for men) [9] either
at baseline or at the annual visit were excluded. Consequently, a total of 5921 participants
were available for the analysis (Figure 1).
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2.2. Dietary Assessment and Polyphenol Intake

At baseline, and at one year of follow-up visits, registered dietitians collected data on
dietary intake using a validated 143-item semi-quantitative food-frequency questionnaire
(FFQ) [11], from which the total energy and nutrient intake were calculated based on
Spanish food composition tables [12]. Additionally, a validated 17-point score questionnaire
on adherence to an energy-restricted traditional Mediterranean diet was filled out [13].

The 143-item FFQ was also used to calculate polyphenol intake together with the
Phenol-Explorer database (www.phenol-explorer.eu (accessed on 15 September 2021)).
Individual polyphenol intakes were obtained by multiplying the content of each polyphe-
nol in each food item with polyphenols (mg/g) by the daily consumption of this food
item (g/day) and then summing the product across all food items. Total polyphenols
and polyphenol subclasses were then adjusted for total energy intake using the residual
method [14], and variables were transformed into tertiles of changes (one year vs. baseline).

2.3. Ascertainment of the Endpoints

The main endpoints were one-year changes of fasting plasma glucose (mg/dL) and
glycosylated hemoglobin (HbA1c) (%) levels. Both parameters were measured in overnight
fasting blood samples by routine laboratory tests.

2.4. Assessment of Covariates

Participants filled out a general questionnaire to provide data on lifestyle habits,
education, concurrent diseases, and medication use. Physical activity was measured by a
Regicor Short Physical Activity Questionnaire validated for the Spanish population [15].

Anthropometric parameters were measured at baseline and every follow-up visit by
trained dietitians according to the PREDIMED-Plus protocol. Height, weight, waist, and

http://predimedplus.com
www.phenol-explorer.eu
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hip circumference were measured in duplicate by trained staff. BMI was calculated as
weight in kilograms divided by height in meters squared.

Blood samples were collected after overnight fasting and stored frozen (−80 ◦C).
Serum triglyceride and total and high-density lipoprotein (HDL) cholesterol levels were
measured by routine laboratory tests using standard enzymatic methods.

Sociodemographic and lifestyle variables were categorized in four categories as fol-
lows: education (primary, secondary, or high school), physical activity (sedentary, mod-
erately active, and active), smoking status (never, former, or current smoker), and BMI
(27.0–29.9, 30.0–34.9, or ≥35 kg/m2).

Previous diagnosis of T2D was also registered, as well as glucose-lowering treatment.
T2D was diagnosed according to American Diabetes Association guidelines: fasting plasma
glucose levels ≥ 7.0 mmol/L (≥126 mg/dL), HbA1c levels ≥ 6.5% or 2 h plasma glucose
levels ≥ 11.1 mmol/L (≥200.0 mg/dL) after an oral dose of 75 g glucose [13]. Prediabetes
was defined according to the criteria of the American Diabetes Association as impaired fast-
ing glucose (5.6–6.9 mmol/L, or 100–125 mg/dL) and/or raised HbA1c of 39–47 mmol/mol
(5.7–6.4%) [16].

2.5. Statistical Analyses

Baseline characteristics according to tertiles of changes in total polyphenol intake
are presented as means (±SD) for quantitative variables and frequencies for categorical
variables. One-factor ANOVA tests were used to assess the differences between tertiles and
chi square tests for categorical variables.

Linear mixed-effect models with random intercepts at the recruitment center and
cluster family level were used to assess associations between changes in polyphenol sub-
classes intake and glucose and HbA1c levels over the first year of follow-up. The intake
of total polyphenols and the main polyphenol subclasses were distributed into tertiles
of changes in consumption after one year of follow-up. To assess the linear trend (p for
trend) across tertiles of polyphenol intake, the mean value was assigned to each tertile.
Model 1 was minimally adjusted for age, sex, and study arm. Model 2 was additionally
adjusted for smoking status and levels of education and physical activity at baseline (all
categorical). Model 3 was further adjusted for baseline variables such as BMI, energy intake,
and intakes of carbohydrates, protein, saturated fatty acids, and alcohol (continuous), and
glucose-lowering treatment (Yes/No).

To account for multiple comparisons, we applied the Bonferroni correction to interpret
the results. Considering the 12 polyphenols analyzed, significance was established at
a p value threshold of 0.004 (p value < 0.05/12 = 0.004), although all p values below
0.05 have been mentioned. Statistical analyses were performed using STATA software
(version 16; StataCorp, College Station, TX, USA), and statistical significance was set at
p < 0.05. We used the PREDIMED-Plus longitudinal database generated on 26 June 2020
(202006290731_PREDIMEDplus).

3. Results

This work involved 5921 participants from the PREDIMED-plus cohort that com-
pleted the first year of the study. The mean age of the population was 65.0 ± 4.9 years,
and 48.2% were women; 30.7% had been diagnosed with diabetes at baseline, and 48.5%
were prediabetic. The mean total polyphenol intake was 854 ± 318 mg/day at baseline
and 855.0 ± 293 mg/day after one year, indicating no overall change. Breaking down the
polyphenols by type, 58% corresponded to flavonoids, 33% were phenolic acids, and the rest
were stilbenes, lignans and others, which remained the same after one year. Hydroxycin-
namic acids were the most consumed polyphenol class (30%), followed by flavanols (27%),
proanthocyanidins (24%), flavanones (10.6%), flavones (9%), flavonols (6%), anthocyanidins
(5%), catechins (3%) and hydroxybenzoic acids (2%).

Table 1 summarizes the baseline characteristics of participants classified in tertiles
according to changes in total polyphenol intake adjusted for energy using the residual
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method. During the first year, participants in the lowest tertile (T1) reduced their polyphe-
nol intake by a mean of 249 mg/day, whereas those in the highest tertile (T3) increased
their intake by a mean of 256 mg/day. The intake in the middle tertile (T2) remained quite
stable. T3 included the highest percentage of men and participants from the interven-
tion group (energy-restricted Mediterranean diet plus physical activity). No significant
differences across tertiles were observed regarding age, educational level, smoking habit,
physical activity, diabetes status, glucose and HbA1c levels at baseline, and all groups had
lower levels of glucose and HbA1c after one year. This is due to the interventions that all
participants received, which were (1) an intensive weight-loss intervention based on an
energy-restricted Mediterranean diet, individualized physical activity plan, and behavioral
support or (2) an intervention based on the traditional Mediterranean diet and usual health
care (control group). According to the Mediterranean Diet score, participants from all
groups had healthier diets after one year. Although, the greatest reduction in glucose was
observed among the participants in T3, that is, those who adopted a high polyphenol diet.
It is worth mentioning that fasting glucose and HbA1c levels were also significantly lower
in T1. This could be explained because participants were divided in tertiles of change of
polyphenol intake, but not all variables across the groups were equally distributed. For
instance, the ones who decreased polyphenol intake after one year also had the highest
consumption of olive oil. Therefore, the real associations appeared after the statistical
models were adjusted for confounders.

Table 2 shows dietary changes after one year corresponding to each tertile of changes
in total polyphenol intake. Although all the participants adopted healthier dietary patterns,
there were differences between groups. For instance, those in T3 reduced their total
calory intake per day by almost 200 kcal, compared to 129 kcal in T1. This difference can
be explained by the higher reduction in dietary protein and saturated fatty acids in T3.
Nevertheless, the most notable reduction in alcohol intake was in T1. We observed that
participants who reduced their total polyphenol consumption also had lower carbohydrate
and higher MUFA and PUFA intakes. The improvements in these parameters seem to
be correlated with changes in diet, as these participants reduced their consumption of
cookies, pastries, and fruit. Overall, participants in T3 obtained the highest score in the
Mediterranean-diet adherence test after one year, and they had consumed more vegetables,
fruits, and fiber and fewer cereals, dairy, meat, and sugary items (cookies, pastries and
sweets, sugar, and soft drinks). No differences were observed for fish and nuts.

Table 1. Characteristics of the study participants, according to tertiles of changes in total polyphenol intake.

Tertiles of ∆ Polyphenol Intake after 1 Year

Change of polyphenol intake
(mg/day), median (min to max)

T1
−249 (−2400 to −106)

T2
1.52 (−106 to 107)

T3
256 (107 to 1400) p

No. of subjects 1974 1974 1973

Allocated in the intervention group 901 (45.6) 955 (48.4) 1044 (52.9) <0.001

Age (years), mean ± SD 65.2 ± 4.9 65.0 ± 4.8 64.9 ± 4.9 0.09

Women, n (%) 987 (50.0) 971 (49.2) 898 (45.5) 0.01

Education, n (%)

Primary school 981 (49.7) 971 (49.2) 990 (50.2) 0.11

High school 545 (27.6) 606 (30.7) 550 (27.9)

University 448 (22.7) 397 (20.1) 433 (21.9)

Current smoker, n (%)

Baseline 243 (12.3) 242 (12.2) 250 (12.7) 0.06

After 1 year 205 (11.9) 202 (11.9) 214 (13.3) 0.45
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Table 1. Cont.

Tertiles of ∆ Polyphenol Intake after 1 Year

Physical activity (METS.min/week),
mean ± SD

Baseline 2543 ± 2283 2454 ± 2329 2527 ± 2353 0.34

1-year change 518 ± 2480 * 506 ± 2363 * 567 ± 2433 * 0.70

Diabetes status

Nondiabetic participants 384 (19.5) 432 (21.9) 415 (21.0) 0.36

Pre-diabetic participants 981 (49.7) 950 (48.1) 941 (47.7)

Diabetic participants 609 (30.9) 592 (30.0) 617 (31.3)

Glucose (mg/dL), mean ± SD

Baseline 113.67 ± 28.70 112.18 ± 29.08 114.29 ± 28.97 0.06

1-year change −2.41 ± 20.92 * −1.59 ± 23.13 −3.4 ± 23.04 * 0.04

HbA1c (%), mean ± SD

Baseline 6.12 ± 0.87 6.08 ± 0.87 6.11 ± 0.83 0.25

1-year change −0.09 ± 0.53 * −0.05 ± 0.53 −0.09 ± 0.57 * 0.07

Values are frequencies and percentages for categorical variables or means ± SDs for continuous variables, except
for polyphenol intake, which are median (min-max). Analysis of variance one factor (ANOVA) was used for
continuous variables and the χ2 test for categorical variables. BMI, body mass index (calculated as weight in
kilograms divided by height in meters squared); SD, standard deviation. * Significant differences between baseline
and one-year data.

Table 2. Changes in daily intake of nutrients, food items, and Mediterranean diet score after one year,
according to tertiles of changes in total polyphenol intake.

Tertiles of ∆ Polyphenol Intake after 1 Year

T1
−249 (−2400 to −106)

T2
1.52 (−106 to 107)

T3
256 (107 to 1400) p Adjusted p

No. of subjects 1974 1974 1973

Total energy (Kcal/d)

Baseline 2382 ± 547 2289 ± 541 2430 ± 552 <0.001 <0.001

1-year change −128.7 ± 524.8 −135.1 ± 483.5 −194.4 ± 541.7 0.002 <0.001

Carbohydrates (g/d)

Baseline 246 ± 73 231 ± 71 245 ± 73 <0.001 <0.001

1-year change −34.7 ± 70.0 −29.2 ± 66.0 −31.6 ± 75.6 0.05 <0.001

Fiber (g/d)

Baseline 29 ± 10 25 ± 8 25 ± 8 <0.001 <0.001

1-year change 0.5 ± 9.7 3.6 ± 8.3 6.8 ± 9.1 <0.001 <0.001

Proteins (g/d)

Baseline 98 ± 22 96 ± 22 99 ± 22 <0.001 <0.001

1-year change −1.2 ± 21.8 −2.1 ± 20.8 −4.0 ± 22.1 <0.001 <0.001
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Table 2. Cont.

Tertiles of ∆ Polyphenol Intake after 1 Year

T1
−249 (−2400 to −106)

T2
1.52 (−106 to 107)

T3
256 (107 to 1400) p Adjusted p

MUFA (g/d)

Baseline 53 ± 16 53 ± 16 56 ± 16 <0.001 <0.001

1-year change 7.0 ± 18.4 4.6 ± 16.8 1.9 ± 18.2 <0.001 <0.001

PUFA (g/d)

Baseline 18 ± 6 17 ± 6 19 ± 7 <0.001 <0.001

1-year change 1.7 ± 7.2 1.0 ± 6.8 0.1 ± 7.3 <0.001 <0.001

SFA (Kcal/d)

Baseline 26 ± 9 25 ± 8 27 ± 9 <0.001 <0.001

1-year change −2.5 ± 8.1 −3.3 ± 7.3 −4.8 ± 8.2 <0.001 <0.001

Alcohol (g/d)

Baseline 11 ± 14 11 ± 15 12 ± 16 0.05 0.31

1-year change −2.0 ± 11.3 −1.2 ± 10 −0.5 ± 11.8 <0.001 <0.001

17-points MedDiet score

Baseline 8.86 ± 2.7 8.45 ± 2.63 8.22 ± 2.65 <0.001 <0.001

1-year change 2.6 ± 3.1 3.3 ± 3.2 3.9 ± 3.3 <0.001 <0.001

Food items, g/day

Vegetables

Baseline 348 ± 146 326 ± 136 313 ± 127 <0.001 <0.001

1-year change 6.4 ± 153.5 32.0 ± 143.7 60.7 ± 146.8 <0.001 <0.001

Fruits

Baseline 430 ± 240 341 ± 179 308 ± 167 <0.001 <0.001

1-year change −58.5 ± 236.0 42.2 ± 177.9 146.9 ± 204.4 <0.001 <0.001

Legumes

Baseline 21 ± 11 20 ± 11 20 ± 11 0.001 <0.001

1-year change 3.8 ± 13.6 4.6 ± 13.1 4.1 ± 13.3 0.15 0.04

Cereals

Baseline 146 ± 77 145 ± 74 161 ± 82 <0.001 <0.001

1-year change −15.4 ± 82.0 −23.1 ± 76.6 −35.2 ± 88.1 <0.001 <0.001

Dairy

Baseline 348 ± 206 336 ± 193 349 ± 203 0.07 0.05

1-year change −11.8 ± 191.7 −19.9 ± 177.2 −27.7 ± 193.4 0.03 <0.001

Meat

Baseline 144 ± 57 146 ± 57 153 ± 61 <0.001 <0.001

1-year change −8.6 ± 57.1 −16.1 ± 55.3 −24.1 ± 57.0 <0.001 <0.001

Olive oil

Baseline 39 ± 16 40 ± 17 42 ± 17 <0.001 <0.001

1-year change 6.8 ± 18.9 4.7 ± 17.7 1.4 ± 19.1 <0.001 <0.001

Fish

Baseline 105 ± 47 101 ± 47 101 ± 47 0.02 0.02

1-year change 8.1 ± 53.0 10.1 ± 50.7 9.7 ± 50.3 0.43 0.30

Nuts

Baseline 16 ± 17 14 ± 17 15 ± 17 0.04 0.04

1-year change 13.8 ± 23.1 13.3 ± 21.0 14.3 ± 22.1 0.37 0.29
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Table 2. Cont.

Tertiles of ∆ Polyphenol Intake after 1 Year

T1
−249 (−2400 to −106)

T2
1.52 (−106 to 107)

T3
256 (107 to 1400) p Adjusted p

Cookies, pastries, and
sweets

Baseline 30 ± 31 23 ± 27 27 ± 31 <0.001 <0.001

1-year change −14.7 ± 29.7 −10.4 ± 26.4 −11.6 ± 31.2 <0.001 <0.001

Sugar

Baseline 6 ± 12 7 ± 12 7 ± 12 0.32 0.62

1-year change −2.5 ± 9.8 −3.1 ± 10.0 −3.6 ± 10.8 0.003 <0.001

Soft drinks

Baseline 20 ± 59 21 ± 64 23 ± 66 0.16 0.27

1-year change −7.0 ± 67.8 −10.4 ± 64.1 −12.9 ± 77.9 0.03 0.004

Values are means ± SD. p-values were calculated by ANCOVA tests adjusted for sex, age, intervention group,
education level, and recruitment center. MUFA, Monounsaturated Fatty Acids; PUFA, Polyunsaturated Fatty
Acids; SFA, Saturated Fatty Acids; MedDiet, Mediterranean Diet.

We generated linear mixed models to study the association between changes in glucose
and HbA1c levels and tertiles of change in polyphenol intake after one year (Table 3).
Analyses were performed for total polyphenols, total flavonoids (including anthocyanidins,
catechins, proanthocyanidins, flavanones, flavones, and flavonols), total phenolic acids
(including hydroxycinnamic acids and hydroxybenzoic acids), lignans, and stilbenes. We
compared the participants in T1 and T3 using T2 as a reference, as the polyphenol intake
in this group did not change. The extreme groups were also compared with each other
(T1 vs. T3).

In multivariable-adjusted models, considering anthropometric, sociodemographic,
lifestyle, and dietary variables after one year of follow-up, an increment in total polyphenol
intake was inversely associated with glucose levels (β = −1.76; 95% CI −3.18, −0.34) when
comparing T3 with T2. Moreover, HbA1c values were lower in T1 than in T2 (β = −0.039;
95% CI −0.076, −0.002), although further analyses revealed that this result was correlated
with the hydroxycinnamic acid intake (β = −0.04; 95% CI −0.077, −0.004; T1 vs. T2).

Due to the heterogeneity of polyphenols, they were studied separately. The increase
in total flavonoids was also correlated with a decrease in glucose levels (β = −1.56; 95%
CI −2.99, −0.13; T3 vs. T1). Among the flavonoids, flavones and flavonols were both
inversely associated with glucose and HbA1c, the last with a lineal relationship. Antho-
cyanidins were also inversely associated with HbA1c (β = −0.037; 95% CI −0.075, 0.000;
T3 vs. T2), but, after adjusting for all the potential confounding variables, the association
was not significant (p = 0.05). Some correlations with glucose and HbA1c were also found
for the non-flavonoids: lignans and stilbenes. In the case of lignans, the association was
also linear.

We wanted to study if diabetes status was an important factor when analyzing the
impact of polyphenol intake on glucose and HbA1c, so the analyses were repeated after
dividing the population in three groups: those without diabetes, and prediabetic and
diabetic participants (Table 4 and Figure 2). Interestingly, the role of polyphenols was
found to differ considerably depending on the diabetes status. No significant associations
were found within the non-diabetic group, whereas the participants who most benefited
from a higher polyphenol intake were prediabetic. In this group, several polyphenol
classes were inversely associated with levels of glucose (total polyphenols, total flavonoids,
proanthocyanidins, flavanones, and flavones) or HbA1c (flavones and lignans). Once again,
hydroxycinnamic acid intake was directly associated with HbA1c. Fewer polyphenol
groups were associated with glucose-related parameters in diabetic participants (flavonols,
lignans, and stilbenes).
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Table 3. Changes in glucose (mg/dL) and glycosylated hemoglobin (HbA1c) (%) according to tertiles of change of polyphenol intake (mg/dL) after one year. Results
from linear mixed models.

T1 (vs. T2) p T2 T3 (vs. T2) p T3 (vs. T1) p p-Trend

Total polyphenols −249 (−2400, −106) a 2 (−106, 107) 257 (107, 1400)

Glucose Model 1 −2.56 (−3.46, −1.66) b <0.001 ref. −2.34 (−3.24, −1.44) <0.001 0.22 (−0.74, 1.18) 0.66 0.12
Model 2 −2.78 (−3.72, −1.84) <0.001 ref. −2.56 (−3.51, −1.61) <0.001 0.23 (−0.78, 1.23) 0.62 0.33
Model 3 −0.94 (−2.36, 0.48) 0.19 ref. −1.76 (−3.18, −0.34) 0.015 −0.82 (−2.24, 0.61) 0.23 0.43

HbA1c Model 1 0.015 (−0.008, 0.037) 0.19 ref. 0.008 (−0.015, 0.031) 0.50 −0.007 (−0.031, 0.018) 0.55 0.76
Model 2 0.011 (−0.012, 0.034) 0.35 ref. 0.001 (−0.023, 0.025) 0.92 −0.01 (−0.035, 0.016) 0.44 0.80
Model 3 −0.039 (−0.076, −0.002) 0.04 ref. −0.032 (−0.069, 0.005) 0.09 0.007 (−0.031, 0.044) 0.36 0.46

Total flavonoids −195 (−2405, −78) 3 (−78, 84) 193 (84, 1383)

Glucose Model 1 0.46 (−0.45, 1.37) 0.32 ref. −0.6 (−1.51, 0.31) 0.20 −1.06 (−2.04, −0.07) 0.04 0.16
Model 2 0.01 (−0.95, 0.96) 0.99 ref. −0.79 (−1.75, 0.18) 0.11 −0.79 (−1.83, 0.24) 0.14 0.16
Model 3 0.17 (−1.25, 1.59) 0.81 ref. −1.39 (−2.82, 0.04) 0.06 −1.56 (−2.99, −0.13) 0.03 0.16

HbA1c Model 1 −0.029 (−0.052, −0–006) 0.014 ref. −0.033 (−0.057, −0.01) 0.006 −0.004 (−0.029, 0.021) 0.79 0.42
Model 2 −0.019 (−0.043, 0.005) 0.12 ref. −0.021 (−0.045, 0.004) 0.09 −0.002 (−0.027, 0.024) 0.95 0.23
Model 3 −0.024 (−0.061, 0.013) 0.21 ref. −0.024 (−0.061, 0.013) 0.20 −0.001 (−0.038, 0.037) 0.99 0.72

Anthocyanidins −25 (−526, −10) 0 (−10, 10) 25 (10, 209)

Glucose Model 1 1.87 (0.96, 2.78) <0.001 ref. 1.72 (0.81, 2.63) <0.001 −0.15 (−1.1, 0.8) 0.76 0.05
Model 2 1.42 (0.46, 2.37) 0.004 ref. 1.74 (0.77, 2.70) <0.001 0.32 (−0.68, 1.32) 0.56 0.03
Model 3 0.06 (−1.36, 1.48) 0.93 ref. −0.43 (−1.86, 1.00) 0.56 −0.49 (−1.92, 0.94) 0.50 0.89

HbA1c Model 1 0.024 (0.001, 0.047) 0.04 ref. −0.026 (−0.05, −0.003) 0.03 −0.05 (−0.075, −0.025) <0.001 0.83
Model 2 0.019 (−0.004, 0.043) 0.11 ref. −0.019 (−0.044, 0.005) 0.12 −0.039 (−0.064, −0.013) 0.003 0.35
Model 3 −0.028 (−0.065, 0.009) 0.14 ref. −0.037 (−0.075, 0.000) 0.05 −0.009 (−0.047, 0.028) 0.66 0.62

Catechins −14 (−162, −5) 0 (−5, 6) 14 (6, 176)

Glucose Model 1 −0.46 (−1.35, 0.42) 0.31 ref. 0.25 (−0.65, 1.14) 0.59 0.71 (−0.2, 1.61) 0.12 0.77
Model 2 0.00 (−0.93, 0.93) 0.99 ref. 0.29 (−0.64, 1.23) 0.54 0.29 (−0.66, 1.24) 0.55 0.51
Model 3 0.76 (−0.66, 2.17) 0.30 ref. −0.11 (−1.53, 1.31) 0.90 −0.87 (−2.29, 0.55) 0.23 0.27

HbA1c Model 1 0.038 (0.016, 0.06) 0.001 ref. 0.029 (0.006, 0.052) 0.01 −0.009 (−0.032, 0.014) 0.36 0.89
Model 2 0.044 (0.021, 0.067) <0.001 ref. 0.028 (0.004, 0.051) 0.02 −0.017 (−0.04, 0.007) 0.15 0.90
Model 3 0.008 (−0.028, 0.045) 0.65 ref. −0.019 (−0.057, 0.018) 0.30 −0.028 (−0.065, 0.009) 0.14 0.35

Proanthocyanidins −122 (−2169, −48) −4 (−48, 40) 106 (40, 1207)

Glucose Model 1 1.97 (1.07, 2.87) <0.001 ref. 0.27 (−0.63, 1.18) 0.55 −1.7 (−2.64, −0.75) <0.001 0.10
Model 2 1.15 (0.19, 2.11) 0.02 ref. −0.35 (−1.31, 0.61) 0.47 −1.51 (−2.5, −0.51) 0.003 0.01
Model 3 1.13 (−0.29, 2.55) 0.12 ref. −0.15 (−1.58, 1.29) 0.84 −1.28 (−2.71, 0.15) 0.08 0.61

HbA1c Model 1 0.031 (0.008, 0.054) 0.009 ref. −0.015 (−0.039, 0.008) 0.20 −0.046 (−0.071, −0.022) <0.001 0.001
Model 2 0.031 (0.007, 0.055) 0.01 ref. −0.014 (−0.038, 0.011) 0.28 −0.044 (−0.07, −0.019) 0.001 <0.001
Model 3 −0.012 (−0.049, 0.025) 0.51 ref. −0.02 (−0.058, 0.018) 0.30 −0.008 (−0.045, 0.030) 0.70 0.56
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Table 3. Cont.

T1 (vs. T2) p T2 T3 (vs. T2) p T3 (vs. T1) p p-Trend

Flavanones −42 (−554, −5) 13 (−5, 36) 77 (36, 860)

Glucose Model 1 −1.48 (−2.38, −0.58) 0.001 ref. −2.27 (−3.19, −1.35) <0.001 −0.79 (−1.76, 0.18) 0.11 0.75
Model 2 −1.37 (−2.31, −0.43) 0.004 ref. −2.52 (−3.49, −1.55) <0.001 −1.15 (−2.16, −0.15) 0.04 0.30
Model 3 0.53 (−0.88, 1.95) 0.46 ref. −0.33 (−1.75, 1.09) 0.65 −0.86 (−2.28, 0.56) 0.24 0.38

HbA1c Model 1 −0.026 (−0.048, −0.003) 0.02 ref. 0.019 (−0.004, 0.043) 0.11 0.045 (0.021, 0.07) <0.001 <0.001
Model 2 −0.013 (−0.036, 0.010) 0.28 ref. 0.011 (−0.013, 0.036) 0.36 0.024 (−0.001, 0.05) 0.06 0.02
Model 3 −0.015 (−0.052, 0.022) 0.43 ref. 0.007 (−0.030, 0.044) 0.71 0.022 (−0.015, 0.059) 0.25 0.10

Flavones −21 (−305, 1) 13 (1, 30) 55 (30, 344)

Glucose Model 1 0.71 (−0.2, 1.63) 0.12 ref. −0.46 (−1.44, 0.52) 0.36 −1.17 (−2.19, −0.16) 0.02 0.007
Model 2 1.05 (0.08, 2.02) 0.03 ref. −0.09 (−1.12, 0.94) 0.86 −1.14 (−2.2, −0.08) 0.03 0.008
Model 3 −1.2 (−2.64, 0.23) 0.10 ref. −1.56 (−3.02, −0.11) 0.62 −1.56 (−3.02, −0.11) 0.04 0.20

HbA1c Model 1 −0.053 (−0.076, −0.029) <0.001 ref. −0.026 (−0.051, 0.000) 0.05 0.027 (0.001, 0.053) 0.019 <0.001
Model 2 −0.045 (−0.07, −0.021) <0.001 ref. −0.024 (−0.05, 0.003) 0.08 0.022 (−0.005, 0.049) 0.06 <0.001
Model 3 −0.015 (−0.053, 0.022) 0.41 ref. −0.049 (−0.087, −0.012) 0.01 −0.034 (−0.072, 0.004) 0.08 0.12

Flavonols −15 (−103, −4) 4 (−4, 12) 26 (12, 177)

Glucose Model 1 −1.59 (−2.5, −0.67) 0.001 ref. 1.4 (0.44, 2.36) 0.004 2.99 (1.96, 4.01) <0.001 0.51
Model 2 −1.4 (−2.37, −0.44) 0.004 ref. 1.3 (0.3, 2.3) 0.01 2.7 (1.63, 3.78) <0.001 0.85
Model 3 0.13 (−1.29, 1.55) 0.86 ref. −1.36 (−2.78, 0.06) 0.06 −1.49 (−2.93, −0.05) 0.04 0.03

HbA1c Model 1 0.019 (−0.004, 0.042) 0.11 ref. −0.053 (−0.077, −0.029) <0.001 −0.072 (−0.098, −0.045) <0.001 <0.001
Model 2 0.017 (−0.007, 0.04) 0.17 ref. −0.036 (−0.061, −0.011) 0.004 −0.053 (−0.08, −0.026) <0.001 0.05
Model 3 −0.005 (−0.042, 0.033) 0.81 ref. −0.073 (−0.11, −0.036) <0.001 −0.069 (−0.106, −0.031) <0.001 0.003

Hydroxycinnamic
acids −103 (−725, −32) −3 (−32, 26) 93 (26, 739)

Glucose Model 1 −3.07 (−3.96, −2.19) <0.001 ref. −1.28 (−2.17, −0.38) 0.005 1.8 (0.86, 2.73) <0.001 <0.001
Model 2 −3.24 (−4.17, −2.3) <0.001 ref. −1.28 (−2.22, −0.34) 0.007 1.96 (0.97, 2.94) <0.001 <0.001
Model 3 −0.94 (−2.36, 0.47) 0.19 ref. −0.26 (−1.68, 1.16) 0.72 0.69 (−0.74, 2.11) 0.34 0.47

HbA1c Model 1 −0.015 (−0.037, 0.007) 0.18 ref. 0.02 (−0.003, 0.042) 0.09 0.035 (0.011, 0.059) 0.004 0.41
Model 2 −0.018 (−0.041, 0.006) 0.14 ref. 0.016 (−0.007, 0.039) 0.18 0.034 (0.009, 0.058) 0.008 0.85
Model 3 −0.04 (−0.077, −0.004) 0.03 ref. −0.021 (−0.058, 0.016) 0.26 0.019 (−0.018, 0.057) 0.31 0.40

Hydroxybenzoic
acids −13 (−55, −7) −4.4 (−7, −1) 3.3 (−1, 64)

Glucose Model 1 0.13 (−0.73, 0.99) 0.77 ref. −0.06 (−0.94, 0.82) 0.89 −0.19 (−1.14, 0.76) 0.70 0.79
Model 2 0.27 (−0.63, 1.18) 0.55 ref. 0.04 (−0.88, 0.96) 0.93 −0.23 (−1.22, 0.76) 0.64 0.93
Model 3 −0.1 (−1.53, 1.33) 0.89 ref. 0.33 (−1.09, 1.76) 0.65 0.44 (−1.02, 1.89) 0.56 0.80

HbA1c Model 1 −0.038 (−0.06, −0.016) 0.001 ref. −0.027 (−0.049, −0.004) 0.02 0.011 (−0.013, 0.036) 0.32 0.77
Model 2 −0.035 (−0.058, −0.013) 0.002 ref. −0.028 (−0.051, −0.005) 0.016 0.007 (−0.018, 0.032) 0.53 0.70
Model 3 0.001 (−0.036, 0.038) 0.96 ref. 0.007 (−0.03, 0.044) 0.70 0.006 (−0.032, 0.044) 0.75 0.77

Lignans −0.4 (−7,2, −0.1) 0.1 (−0.1, 0.3) 0.5 (0.3, 5.8)

Glucose Model 1 0.27 (−0.67, 1.2) 0.58 ref. 0.63 (−0.31, 1.58) 0.19 0.37 (−0.66, 1.4) 0.50 0.05
Model 2 0.33 (−0.65, 1.3) 0.52 ref. 0.49 (−0.52, 1.49) 0.34 0.16 (−0.91, 1.23) 0.59 0.006
Model 3 0.54 (−0.89, 1.96) 0.46 ref. −1.08 (−2.51, 0.35) 0.14 −1.62 (−3.07, −0.17) 0.03 0.08
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Table 3. Cont.

T1 (vs. T2) p T2 T3 (vs. T2) p T3 (vs. T1) p p-Trend

HbA1c Model 1 0.025 (0.002, 0.049) 0.03 ref. 0.001 (−0.024, 0.026) 0.96 −0.025 (−0.052, 0.002) 0.06 0.09
Model 2 0.03 (0.006, 0.054) 0.01 ref. 0.003 (−0.023, 0.029) 0.82 −0.027 (−0.055, 0) 0.04 0.21
Model 3 0.031 (−0.006, 0.068) 0.10 ref. −0.041 (−0.078, −0.003) 0.03 −0.072 (−0.11, −0.034) <0.001 0.003

Stilbenes −1.4 (−30.3, −0.6) 0.0 (−0.6, 0.6) 1.7 (0.6, 27.1)

Glucose Model 1 −0.54 (−1.43, 0.35) 0.24 ref. −1.17 (−2.04, −0.3) 0.08 −0.64 (−1.54, 0.27) 0.15 0.004
Model 2 −0.28 (−1.21, 0.66) 0.46 ref. −1.09 (−2, −0.18) 0.02 −0.81 (−1.76, 0.14) 0.08 0.008
Model 3 1.1 (−0.35, 2.55) 0.14 ref. −0.6 (−2.08, 0.87) 0.42 −1.7 (−3.25, −0.16) 0.03 0.81

HbA1c Model 1 −0.057 (−0.08, −0.035) <0.001 ref. −0.024 (−0.046, −0.002) 0.03 0.033 (0.011, 0.056) 0.004 0.60
Model 2 −0.051 (−0.074, −0.028) <0.001 ref. −0.02 (−0.042, 0.003) 0.09 0.032 (0.008, 0.055) 0.009 0.41
Model 3 −0.005 (−0.042, 0.033) 0.81 ref. −0.038 (−0.076, 0.001) 0.06 −0.033 (−0.073, 0.007) 0.11 0.15

a Median intake (min and max) in mg/day for each tertile. b (β; 95% CI). We used generalized linear mixed models with the following levels: recruitment center and household. Model
1 is adjusted for sex, age (continuous), and intervention group. Model 2 is as model 1 plus education, smoking status (never, former and smokers), and physical activity in leisure
time (sedentary, moderately active, active). Model 3 is as model 2 plus BMI (<30, 30–35, <35), energy intake, intake of carbohydrates, saturated fatty acids, and proteins, alcohol, and
glucose-lowering treatment.
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Table 4. Changes in glucose (mg/dL) and glycosylated hemoglobin (HbA1c) (%) according to tertiles of change in polyphenol intake after one year and stratified by
diabetes status at baseline. Results from linear mixed models.

Non Diabetic Participants
(N = 1231, 21%)

Prediabetic Participants
(N = 2872, 48%)

Diabetic Participants
(N = 1818, 30%)

T3 vs. T1 p T3 vs. T1 p T3 vs. T1 p

Total polyphenols (mg/d) Glucose −0.21 (−1.95, 1.52) a 0.81 −1.16 (−2.25, −0.06) 0.04 −0.83 (−4.95, 3.30) 0.69

HbA1c 0.011 (−0.040, 0.062) 0.68 0.011 (−0.017, 0.04) 0.44 −0.011 (−0.118, 0.097) 0.85

Total flavonoids (mg/d) Glucose −0.99 (−2.72, 0.75) 0.27 −1.66 (−2.75, −0.56) 0.001 −2.24 (−6.39, 1.90) 0.29

HbA1c 0.025 (−0.028, 0.077) 0.36 −0.009 (−0.037, 0.02) 0.55 −0.014 (−0.122, 0.095) 0.81

Anthocyanidins (mg/d) Glucose 0.44 (−1.31, 2.19) 0.62 −0.4 (−1.5, 0.7) 0.48 −0.80 (−4.95, 3.35) 0.71

HbA1c −0.004 (−0.057, 0.049) 0.87 0.003 (−0.026, 0.031) 0.85 −0.025 (−0.134, 0.083) 0.65

Catechins (mg/d) Glucose −0.19 (−1.91, 1.53) 0.83 −0.67 (−1.76, 0.42) 0.23 −2.08 (−6.18, 2.02) 0.32

HbA1c 0.007 (−0.044, 0.059) 0.79 −0.003 (−0.031, 0.025) 0.84 −0.101 (−0.208, 0.006) 0.06

Proanthocyanidins (mg/d) Glucose −0.58 (−2.31, 1.15) 0.51 −1.2 (−2.3, −0.1) 0.03 −2.46 (−6.59, 1.68) 0.24

HbA1c 0.033 (−0.019, 0.085) 0.21 −0.008 (−0.036, 0.021) 0.58 −0.033 (−0.141, 0.076) 0.56

Flavanones (mg/d) Glucose −0.08 (−1.81, 1.66) 0.93 −1.02 (−2.11, 0.08) 0.07 −1.22 (−5.34, 2.89) 0.56

HbA1c 0.016 (−0.035, 0.068) 0.54 0.007 (−0.022, 0.035) 0.64 0.048 (−0.060, 0.155) 0.39

Flavones (mg/d) Glucose −1.03 (−2.78, 0.72) 0.25 −1.27 (−2.39, −0.15) 0.03 −3.02 (−7.24, 1.20) 0.16

HbA1c −0.000 (−0.052, 0.051) 0.99 −0.03 (−0.059, 0.000) 0.05 −0.084 (−0.194, 0.025) 0.13

Flavonols (mg/d) Glucose −1.39 (−3.13, 0.34) 0.12 −0.95 (−2.05, 0.15) 0.09 −2.46 (−6.58, 1.66) 0.24

HbA1c 0.009 (−0.042, 0.061) 0.72 −0.036 (−0.065, −0.007) 0.01 −0.148 (−0.256, −0.040) 0.01

Total phenolics acids (mg/d) Glucose 0.26 (−1.46, 1.97) 0.77 0.48 (−0.62, 1.57) 0.39 0.01 (−4.09, 4.11) 1.00

HbA1c 0.018 (−0.032, 0.069) 0.48 0.022 (−0.007, 0.05) 0.13 0.006 (−0.101, 0.113) 0.91

Hydroxycinnamic acids (mg/d) Glucose 0.53 (−1.19, 2.25) 0.54 0.2 (−0.89, 1.3) 0.72 0.14 (−3.97, 4.24) 0.95

HbA1c 0.02 (−0.031, 0.071) 0.44 0.03 (0.001, 0.058) 0.04 0.003 (−0.104, 0.110) 0.95

Hydroxybenzoic acids (mg/d) Glucose −0.13 (−1.90, 1.65) 0.89 0.34 (−0.77, 1.46) 0.55 1.58 (−2.62, 5.78) 0.46

HbA1c 0.009 (−0.042, 0.061) 0.72 −0.007 (−0.036, 0.022) 0.63 0.034 (−0.077, 0.144) 0.55

Lignans (mg/d) Glucose 0.1 (−1.64, 1.85) 0.91 −0.62 (−1.73, 0.49) 0.27 −4.83 (−8.99, −0.66) 0.02

HbA1c −0.029 (−0.08, 0.023) 0.28 −0.039 (−0.067, −0.01) 0.01 −0.169 (−0.277, −0.062) 0.002

Stilbenes (mg/d) Glucose 0.61 (−1.26, 2.48) 0.52 −0.21 (−1.39, 0.96) 0.73 −5.51 (−9.87, −1.14) 0.01

HbA1c 0.022 (−0.034, 0.077) 0.45 −0.021 (−0.051, 0.01) 0.18 −0.079 (−0.192, 0.034) 0.17
a (β; 95% CI). We used generalized linear mixed models with the following levels: recruitment center and household. Regression models are adjusted for sex, age (continuous), and
intervention group, education, smoking status (never, former and smokers), physical activity at leisure time (sedentary, moderately active, active), BMI (<30, 30–35, <35), energy intake,
and intake of carbohydrates and saturated fatty acids.
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4. Discussion

This work shows a longitudinal inverse association between certain classes of polyphe-
nols and levels of glucose and HbA1c in the PREDIMED-Plus cohort after one year of
follow-up. To our knowledge, this is the first study to assess the relationship between
changes in the intake of all polyphenol groups and T2D-related parameters in a senior
population with or at high risk of T2D.

Although evidence is still limited, it has been suggested that the benefits of dietary
polyphenols regarding T2D may include anti-inflammatory, antioxidant, and glucose
metabolism regulatory effects, such as the inhibition of α-amylases and α-glucosidases,
protection against glucose toxicity in pancreatic β-cells [17], and modulation of glucose
transporter type-4 (GLUT4) receptors.

4.1. Anthocyanidins

Anthocyanidins are a subtype of flavonoids responsible for many of the red to violet
colors in fruits and vegetables. The main food sources of anthocyanins are berries, includ-
ing grapes and derivatives such as wine [4]. We found a significant inverse association
between changes in anthocyanin intake and HbA1c levels (T3 vs. T2), although it was
insignificant for glucose levels. In line with this result, a 12-week randomized double blind
placebo-controlled trial showed that daily supplementation of 320 mg of anthocyanidins
in 160 prediabetic participants significantly reduced HbA1c, while no significant changes
were observed in glucose levels [18]. In the same study population, a higher anthocyanin
intake was correlated with a lower prevalence of T2D in overweight men [19]. Moreover,
in a meta-analysis of cohort studies, Guo et al. showed a 5% decrease in T2D risk with each
7.5 mg/day increment in anthocyanin intake [20].

4.2. Proanthocyanidins

Proanthocyanidins are classified as flavanols, together with catechins and theaflavins [4].
An increase in proanthocyanidin intake was associated with a decrease in fasting glucose
and HbA1c levels, although not in the fully adjusted model. In the stratified analyses
no significant results were observed, except for fasting glucose levels in prediabetic par-
ticipants. This was in line with the null effects observed in clinical trials administering
proanthocyanidin supplements in T2D patients [21,22], whereas some evidence suggests
this flavanol can improve insulin resistance [23]. Although previous studies with the same
population found inverse associations between proanthocyanidin and catechin intake and
T2D risk, in the present work only proanthocyanidins had an effect on T2D indicators [19].

4.3. Flavones

Flavones were inversely associated with fasting glucose levels and HbA1c in pre-
diabetic participants. The main food sources of flavones in the study population were
whole grain products, bread, and oranges. No associations between flavones and T2D risk
were previously found in the same study population or a similar cohort at high risk of
cardiovascular disease [19,24].

4.4. Flavonols

In the case of flavonols, the main dietary sources were red wine and vegetables such as
onion, spinach, and lettuce. After one year of follow-up, a significant increase in vegetable
consumption was observed, especially in participants with a higher intake of dietary
polyphenols. Changes in flavonol intake were inversely associated with changes in HbA1c
levels in both prediabetic and diabetic participants, which is in line with the antidiabetic
effects of flavonols postulated by two large observational studies [25,26]. However, in the
present study, an increase in flavonol intake was significantly correlated with higher fasting
glucose levels, although the correlation was not significant in the stratified analysis. These
findings agree with previous observations for T2D risk in the same cohort [19].
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4.5. Hydroxybenzoic and Hydroxycinnamic Acids

Total phenolic acid intake was not associated with T2D parameters, yet interestingly,
the intake of hydroxycinnamic acids was directly associated with an increase in fasting
glucose and HbA1c levels, except in the fully adjusted model, and the highest increase in
HbA1c levels was observed in prediabetic participants. Hydroxycinnamic acids accounted
for more than 90% of the phenolic acid intake, coffee being the main food source. In
contrast, in a prospective analysis of 4923 T2D participants, drinking two or more cups of
coffee per day was associated with a 41% reduction in all-cause mortality risk [27]. Similar
findings were reported in a meta-analysis of ten prospective cohort studies, where the
risk for all-cause mortality was reduced in a coffee-consuming T2D population [28]. It
should be stressed that the antidiabetic properties of coffee are likely to be mediated by the
polyphenol content rather than caffeine [29,30]. No significant association was observed
for hydroxybenzoic acids; among them, ellagic acid has been correlated with lower HbA1c
and fasting glucose levels and is reported to promote insulin secretion [31].

4.6. Lignans

Even though the ingestion of lignans is low compared to other polyphenol subclasses,
its intake has been associated with several health benefits. The main food sources of
lignans in this cohort were fiber-rich foods, such as whole grain cereals and olive oil. In
the present analysis, a higher intake of fiber was observed in participants who increased
their dietary polyphenol intake after one year of follow-up. Those with the highest increase
in lignan intake, especially prediabetic and diabetic participants, had lower levels of
fasting glucose and HbA1c in the fully adjusted model. These results agree with previous
findings in the PREDIMED cohort and in two U.S. women cohorts [32]. Dietary lignan
intake has been linked with improved glycemic control, mainly HbA1c and fasting plasma
glucose levels, but the evidence from observational studies assessing its effect on T2D
risk is limited [33–35]. The antidiabetic effects exerted by lignans may be mediated by
improvements in central obesity [36]. Other potential mechanisms of action include an
inhibition of α-amylase and α-glucosidase, improvements in insulin sensitivity, activation
of AMPk and GLUT4 receptors, and acting as antagonists of adiponectin receptors [37].
Associated improvements in fasting plasma glucose levels in non-diabetic patients have
also been observed [34].

4.7. Stilbenes

Stilbenes, mainly resveratrol, have been previously associated with a lower risk of T2D
in the PREDIMED cohort [24]. However, in the present study changes in stilbene intake
showed only a mild inverse association with alterations in fasting plasma and HbA1c
levels, which was stronger in diabetic participants. Lui et al. performed a meta-analysis of
11 controlled trials administering trans resveratrol in overweight or obese individuals to
assess whether its consumption affected glycemic status or insulin sensitivity [38]. Notably,
in alignment with our findings, non-significant effects on glycemic measurements were
observed in non-diabetic participants. The main food source of stilbenes is red wine, and
its moderate intake has been associated with a lower risk of T2D [39].

4.8. Effect Modification by Diabetes Status

The improvements in HbA1c levels observed in the present study are similar to those
arising from other dietary interventions in T2D patients, such as high-fiber diets or health
education programs [10,40]. According to the United States Food and Drug Administration,
even a modest reduction in HbA1c levels (0.3 to 0.4%) reduces the risk of developing
diabetes [41].

Polyphenol intake has been shown to have a modulatory effect on the gut microbiota
profile [42]. It is also recognized that the gut microbiota plays a key role in the development
of T2D, due to its implication in carbohydrate metabolism. Moreover, intestinal dysbiosis
has been described in both T2D and prediabetic patients, indicating that certain compo-
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sitional changes in the microbiota participate in the development of the disease [43,44].
Another potential mechanism underlying the antidiabetic effect of polyphenols is the induc-
tion of GLP-1 secretion [45]. The GLP-1 signaling pathway has been extensively explored
to develop effective therapies for T2D, and emerging evidence shows that some phenolic
compounds can stimulate GLP-1 secretion from intestinal L-cells and may, therefore, be
helpful in improving glucose homeostasis [45].

4.9. Strengths and Limitations

The limitations of this study are mostly related to the estimation of polyphenol intake
and the confounding variables, as residual confounding factors may still be present. Re-
garding polyphenols, although we used the most updated and comprehensive database
available (Phenol-explorer), not all foods from the FFQ were included in the database
(e.g., honey), and the questionnaire does not cover all polyphenol-rich foods (e.g., spices)
or the polymeric, non-extractable polyphenols associated with cell wall macromolecules.
Furthermore, phenolic intake can be affected by the variable polyphenol content in foods,
which depends on ripeness, environmental factors, processing and storage, and variety [4].
Finally, bioavailability was not considered, and the results might not be generalizable to
different populations.

The main strengths of the study are the large sample size, the multicenter design, and
longitudinal approach. Regarding sociodemographic and lifestyle variables (confounders),
a standardized protocol was used to reduce the information bias.

5. Conclusions

Evidence suggests that a regular consumption of dietary polyphenols is associated
with improvements in essential biological outcomes for T2D prevention and management.
However, assessing the health benefits of polyphenol intake is complex due to their diverse
chemical structure and variable bioavailability, the complexity of estimating their content in
foods and therefore their intake, potential interactions with other nutrients or polyphenols,
and biological aspects that may modify metabolization [46]. Even though the protective
role of dietary polyphenols in health has been widely demonstrated, more randomized
clinical trials are needed to clarify how their consumption affects biomarkers related to
T2D. Moreover, more information is needed to determine which polyphenol subclasses
are the most beneficial and which food sources produce the best results in terms of T2D
prevention and management.
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