192 research outputs found

    Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF

    Get PDF
    The investigation of high-entropy alloys (HEAs) has revealed many promising properties. HEAs with a high share of Al and Ti are suitable for the formation of lightweight materials. Investigations of the alloy system AlCoCrFeNiTi showed high strength, hardness, ductility, and wear resistance, which makes this special alloy interesting for surface engineering and particularly for thermal spray technology. In this study, the suitability of inert gas-atomised HEA powder for high-velocity-oxygen-fuel (HVOF) thermal spray is investigated. This process allows for high particle velocities and comparatively low process temperatures, resulting in dense coatings with a low oxidation. The microstructure and phase composition of the atomised powder and the HVOF coating were investigated, as well as the wear behaviour under various conditions. A multiphase microstructure was revealed for the powder and coating, whereas a chemically ordered bcc phase occurred as the main phase. The thermal spray process resulted in a slightly changed lattice parameter of the main phase and an additional phase. In comparison with a hard chrome-plated sample, an increase in wear resistance was achieved. Furthermore, no brittle behaviour occurred under abrasive load in the scratch test. The investigation of wear tracks showed only minor cracking and spallation under maximum load

    Electrochemical properties of Al-6060 alloy after industrial-scale ECAP

    No full text
    Equal-channel angular pressing (ECAP) as the most famous method of severe plastic deformation has the potential for up-scaling from laboratory to industrial. Therefore, it is important to examine practice-relevant properties of large billets deformed by this process. Mechanical properties and corrosion resistance essentially influence the service life of construction components. Mechanical properties of an Al-6060 alloy after industrial-scale ECAP (cross-section of the billet 50×50 mm) have been analyzed by P. Frint [4, 17]. The effect of one pass of industrial-scale ECAP on the electrochemical properties of an Al-6060 alloy by means of potentiodynamic polarization tests in 0.1M NaCl solution is investigated. The corroded surfaces were analyzed by means of optical microscopy. In order to characterize the homogeneity of the corrosion behaviour of the ECAP-processed material, all analyzes were taken in different zones perpendicular to the extrusion axis. The results indicate that one ECAP pass does not deteriorate the electrochemical behaviour of the Al-6060 alloy.Вплив одноразового рівноканального кутового пресування на електрохімічні властивості сплаву Al-6060 досліджено методом потенціодинамічної поляризації в 0,1М розчині NaCl. Поверхню після корозії обстежено за допомогою оптичної мікроскопії. Для опису гомогенності характеру корозії матеріалу проаналізовано різні зони, перпендикулярні осі пресування. Виявлено, що воно не змінює електрохімічну поведінку сплаву.Влияние однократного равноканального углового прессования на электрохимические свойства сплава Al-6060 исследовано методом потенциодинамической поляризации в 0,1М растворе NaCl. Поверхность после коррозии обследовано с помощью оптической микроскопии. Для описания гомогенности характера коррозии материала проанализированы разные зоны, перпендикулярные оси прессования. Выявлено, что оно не изменяет электрохимическое поведение сплава

    The Phase composition and microstructure of AlχCoCrFeNiTi alloys for the development of high-entropy alloy systems

    Get PDF
    Alloying aluminum offers the possibility of creating low-density high-entropy alloys (HEAs). Several studies that focus on the system AlCoCrFeNiTi differ in their phase determination. The effect of aluminum on the phase composition and microstructure of the compositionally complex alloy (CCA) system AlxCoCrFeNiTi was studied with variation in aluminum content (molar ratios x = 0.2, 0.8, and 1.5). The chemical composition and elemental segregation was measured for the different domains in the microstructure. The crystal structure was determined using X-ray diffraction (XRD) analysis. To identify the spatial distribution of the phases found with XRD, phase mapping with associated orientation distribution was performed using electron backscatter diffraction. This made it possible to correlate the chemical and structural conditions of the phases. The phase formation strongly depends on the aluminum content. Two different body-centered cubic (bcc) phases were found. Texture analysis proved the presence of a face-centered cubic (fcc) phase for all aluminum amounts. The hard η-(Ni, Co)3Ti phase in the x = 0.2 alloy was detected via metallographic investigation and confirmed via electron backscatter diffraction. Additionally, a centered cluster (cc) with the A12 structure type was detected in the x = 0.2 and 0.8 alloys. The correlation of structural and chemical properties as well as microstructure formation contribute to a better understanding of the alloying effects concerning the aluminum content in CCAs. Especially in the context of current developments in lightweight high-entropy alloys (HEAs), the presented results provide an approach to the development of new alloy systems

    Anodisation of Aluminium Alloys by Micro-Capillary Technique as a Tool for Reliable, Cost-Efficient, and Quick Process Parameter Determination

    Get PDF
    Anodisation is essential for improving surface properties of aluminium alloys and composites regarding wear and corrosion behaviour. Optimisation of the anodising process depends on microstructural constituents contained in aluminium alloys and represents a key task, consisting of the control of process parameters and electrolyte formulation. We applied the micro-capillary technique known from corrosion studies and modified it to form anodic aluminium oxide films on high-strength aluminium alloys in comparison to pure aluminium in sulphuric acid. A glass capillary with an opening of 800 μm in diameter was utilized. Corresponding electrochemical measurements during potentiodynamic and potentiostatic anodisation revealed anodic current responses similar to conventional anodisation. The measurement of film thickness was adapted to the thin anodised spots using ellipsometry and energy dispersive X-ray analysis. Cross sections prepared by focused ion beam milling confirm the thickness results and show the behaviour of intermetallic phases depending on the anodising potential. Consequently, micro-capillary anodising proved to be an effective tool for developing appropriate anodisation conditions for aluminium alloys and composites because it allows quick variation of electrolyte composition by applying low electrolyte volumes and rapid film formation due to short process durations at small areas and more flexible variation of process parameters due to the used set-up

    Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    Get PDF
    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing

    Silicate and Hydroxide Concentration Influencing the Properties of Composite Al2 O3-TiO2 PEO Coatings on AA7075 Alloy

    Get PDF
    This work evaluates the effect of sodium meta-silicate pentahydrate (SMS) and potassium hydroxide concentrations on properties of Al2O3-TiO2 coatings produced through plasma electrolytic oxidation in a solution containing 3 g L−1 potassium titanyl oxalate, (PTO), using a unipolar waveform with constant current density. The surface and cross-section characteristics of PEO coatings including morphology, elemental distribution, and phase composition were evaluated using FESEM, EDS, and XRD techniques. Voltage-time response indicated the concentration of SMS and KOH had a significant effect on the duration of each stage of the PEO process. More cracks and pores were formed at the higher concentrated solutions that resulted in the incorporation of solution components especially Si into the coating inner parts. Ti is distributed throughout the coatings, but it had a dominant distribution in the Si-rich areas. The coating prepared in the electrolyte containing no silicate consisted of non-stoichiometric γ-Al2O3 and/or amorphous Al2O3 phase. Adding silicate into the coating electrolyte resulted in the appearance of α-Al2O3 besides the dominant phase of γ-Al2O3. The corrosion behaviour of the coatings was investigated using the EIS technique. It was found that the coating prepared in the presence of 3 g L−1 SMS and 2 g L−1 KOH, possessed the highest barrier resistance (~10 MΩ cm2), owing to a more compact outer layer, thicker inner layer along with appropriate dielectric property because this layer lacks the Si element. It was discovered that the incorporation of Ti4+ and especially Si4+ in the coating makes the dielectric loss in the coating

    Validation of Simple Shear Tests for Parameter Identification Considering the Evolution of Plastic Anisotropy

    Get PDF
    The evolution of plastic anisotropy plays a key role for an accurate computational springback prediction in complex, multistage forming processes. In many studies, the identification of material parameters is based on experimental results from shear testing because this technique allows for large plastic deformations without facing stability problems that occur, for instance, during uniaxial tensile testing. However, little is known about the   comparability of different shear test setups. In this study, we systematically compare two quite different and widelyused setups for the simple shear test, the Miyauchi setup and the Twente setup. In the shear tests performed on an AA6016 aluminum alloy sheet, we observed a good agreement for the flow stresses measured with the two different   setups. We then use the mechanical data for the identification of a phenomenological model of the evolution of plastic anisotropy, and we demonstrate the importance of consistent and reliable experimental data studying a model for combined isotropic-kinematic hardening
    corecore