712 research outputs found
Polyfluorene as a model system for space-charge-limited conduction
Ethyl-hexyl substituted polyfluorene (PF) with its high level of molecular
disorder can be described very well by one-carrier space-charge-limited
conduction for a discrete set of trap levels with energy 0.5 eV above
the valence band edge. Sweeping the bias above the trap-filling limit in the
as-is polymer generates a new set of exponential traps, which is clearly seen
in the density of states calculations. The trapped charges in the new set of
traps have very long lifetimes and can be detrapped by photoexcitation. Thermal
cycling the PF film to a crystalline phase prevents creation of additional
traps at higher voltages.Comment: 13 pages, 4 figures. Physical Review B (accepted, 2007
Plankton ecology: The past two decades of progress
This is a selected account of recent developments
in plankton ecology. The examples have been
chosen for their degree of innovation during the
past two decades and for their general ecological
importance. They range from plankton autecology
over interactions between populations to community
ecology. The autecology of plankton is
represented by the hydromechanics of plankton
(the problem of life in a viscous environment) and
by the nutritional ecology of phyto- and zooplankton.
Population level studies are represented
by competition, herbivory (grazing), and zooplankton
responses to predation. Community
ecology is represented by the debate about bottom-
up vs. top-down control of community organization,
by the PEG model of seasonal plankton
succession, and by the recent discovery of the microbial
food web
Light, stratification and zooplankton as controlling factors for the spring development of phytoplankton in Lake Constance
The patterns of phytoplankton growth and decline during the spring bloom and the following clear-water phase in Lake Constance have been studied on the basis of cell counts with short-term sampling intervals and related to light climate, stratification and zooplankton pressure
The first decade of oligotrophication of Lake Constance
In Lake Constance, after several decades of cutrophication, a decrease in phosphorus loading over the last decade has lead to a partial recovery from eutrophication. Here we analyse the shift in the taxonomic composition of phytoplankton during the first decade of oligotrophication in Lake Constance. During the 1980s, spring total P concentrations decreased from ca. 130 to less than 50 mgr·l–1. This decrease was reflected by an approximately proportional decrease in summer phytoplankton biomass while spring phytoplankton biomass seemed unresponsive. Major taxonomic changes occured during both growth seasons. In spring, the proportion of diatoms, green algae and Chrysophyta increased while the proportion of Cryptophyta decreased. The summer trend was very different: the relative importance of diatoms decreased and Cryptophyta and Chrysophyta increased, while Chlorophyta reached their peak around 1985. These trends are also analysed at the genus level. Comparison with taxonomic trends during the eutrophication period shows the expected reversals in most cases. Comparison with other lakes shows general similarities, with the notable exception that Planktothrix rubescens has never been important in Lake Constance. The increase of diatoms during spring is attributed to their improved competitive performance with increasing Si:P ratios. Their decrease during summer is explained by the increasing silicate removal from the epilimnion by increasing spring populations
The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe
Phytoplankton periodicity has been fairly regular during the years 1979 to 1982 in Lake Constance. Algal mass growth starts with the vernal onset of stratification; Cryptophyceae and small centric diatoms are the dominant algae of the spring bloom. In June grazing by zooplankton leads to a lsquoclear-water phasersquo dominated by Cryptophyceae. Algal summer growth starts under nutrient-saturated conditions with a dominance of Cryptomonas spp. and Pandorina morum. Depletion of soluble reactive phosphorus is followed by a dominance of pennate and filamentous centric diatoms, which are replaced by Ceratium hirundinella when dissolved silicate becomes depleted. Under calm conditions there is a diverse late-summer plankton dominated by Cyanophyceae and Dinobryon spp.; more turbulent conditions and silicon resupply enable a second summer diatom growth phase in August. The autumnal development leads from a Mougeotia — desmid assemblage to a diatom plankton in late autumn and winter.
Inter-lake comparison of algal seasonality includes in ascending order of P-richness Königsee, Attersee, Walensee, Lake Lucerne, Lago Maggiore, Ammersee, Lake Zürich, Lake Geneva, Lake Constance. The oligotrophic lakes have one or two annual maxima of biomass; after the vernal maximum there is a slowly developing summer depression and sometimes a second maximum in autumn. The more eutrophic lakes have an additional maximum in summer. The number of floristically determined successional stages increases with increasing eutrophy, from three in Königsee and Attersee to eight in Lake Geneva and Lake Constance
Where Two Are Fighting, the Third Wins: Stronger Selection Facilitates Greater Polymorphism in Traits Conferring Competition-Dispersal Tradeoffs
A major conundrum in evolution is that, despite natural selection, polymorphism is still omnipresent in nature: Numerous species exhibit multiple morphs, namely several abundant values of an important trait. Polymorphism is particularly prevalent in asymmetric traits, which are beneficial to their carrier in disruptive competitive interference but at the same time bear disadvantages in other aspects, such as greater mortality or lower fecundity. Here we focus on asymmetric traits in which a better competitor disperses fewer offspring in the absence of competition. We report a general pattern in which polymorphic populations emerge when disruptive selection increases: The stronger the selection, the greater the number of morphs that evolve. This pattern is general and is insensitive to the form of the fitness function. The pattern is somewhat counterintuitive since directional selection is excepted to sharpen the trait distribution and thereby reduce its diversity (but note that similar patterns were suggested in studies that demonstrated increased biodiversity as local selection increases in ecological communities). We explain the underlying mechanism in which stronger selection drives the population towards more competitive values of the trait, which in turn reduces the population density, thereby enabling lesser competitors to stably persist with reduced need to directly compete. Thus, we believe that the pattern is more general and may apply to asymmetric traits more broadly. This robust pattern suggests a comparative, unified explanation to a variety of polymorphic traits in nature.ope
- …