170 research outputs found

    Regulatory de novo mutations underlying intellectual disability

    Get PDF
    The genetic aetiology of a major fraction of patients with intellectual disability (ID) remains unknown. De novo mutations (DNMs) in protein-coding genes explain up to 40% of cases, but the potential role of regulatory DNMs is still poorly understood. We sequenced 63 whole genomes from 21 ID probands and their unaffected parents. In addition, we analysed 30 previously sequenced genomes from exome-negative ID probands. We found that regulatory DNMs were selectively enriched in fetal brain-specific enhancers as compared with adult brain enhancers. DNM-containing enhancers were associated with genes that show preferential expression in the prefrontal cortex. Furthermore, we identified recurrently mutated enhancer clusters that regulate genes involved in nervous system development (CSMD1, OLFM1, and POU3F3). Most of the DNMs from ID probands showed allele-specific enhancer activity when tested using luciferase assay. Using CRISPR-mediated mutation and editing of epigenomic marks, we show that DNMs at regulatory elements affect the expression of putative target genes. Our results, therefore, provide new evidence to indicate that DNMs in fetal brain-specific enhancers play an essential role in the aetiology of ID

    Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies

    Get PDF
    BACKGROUND: Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions. METHODS: We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored. RESULTS: A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI. CONCLUSIONS: Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes

    Cardiovascular disease by diabetes status in five ethnic minority groups compared to ethnic Norwegians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The population in Norway has become multi-ethnic due to migration from Asia and Africa over the recent decades. The aim of the present study was to explore differences in the self-reported prevalence of cardiovascular disease (CVD) and associated risk factors by diabetes status in five ethnic minority groups compared to ethnic Norwegians.</p> <p>Methods</p> <p>Pooled data from three population-based cross-sectional studies conducted in Oslo between 2000 and 2002 was used. Of 54,473 invited individuals 24,749 (45.4%) participated. The participants self-reported health status, underwent a clinical examination and blood samples were drawn. A total of 17,854 individuals aged 30 to 61 years born in Norway, Sri-Lanka, Pakistan, Iran, Vietnam or Turkey were included in the study. Chi-square tests, one-way ANOVAs, ANCOVAs, multiple and logistic regression were used.</p> <p>Results</p> <p>Age- and gender-standardized prevalence of self-reported CVD varied between 5.8% and 8.2% for the ethnic minority groups, compared to 2.9% among ethnic Norwegians (p < 0.001). Prevalence of self-reported diabetes varied from 3.0% to 15.0% for the ethnic minority groups versus 1.8% for ethnic Norwegians (p < 0.001). Among individuals without diabetes, the CVD prevalence was 6.0% versus 2.6% for ethnic minorities and Norwegians, respectively (p < 0.001). Corresponding CVD prevalence rates among individuals with diabetes were 15.3% vs. 12.6% (p = 0.364). For individuals without diabetes, the odds ratio (OR) for CVD in the ethnic minority groups remained significantly higher (range 1.5-2.6) than ethnic Norwegians (p < 0.05), after adjustment for age, gender, education, employment, and body height, except for Turkish individuals. Regardless of diabetes status, obesity and physical inactivity were prevalent in the majority of ethnic minority groups, whereas systolic- and diastolic- blood pressures were higher in Norwegians. In nearly all ethnic groups, individuals with diabetes had higher triglycerides, waist-to-hip ratio (WHR), and body mass index compared to individuals without diabetes. Age, diabetes, hypertension, hypercholesterolemia, and WHR were significant predictors of CVD in both ethnic Norwegians and ethnic minorities, but significant ethnic differences were found for age, diabetes, and hypercholesterolemia.</p> <p>Conclusions</p> <p>Ethnic differences in the prevalence of CVD were prominent for individuals without diabetes. Primary CVD prevention including identification of undiagnosed diabetes should be prioritized for ethnic minorities without known diabetes.</p

    Quality of Data Entry Using Single Entry, Double Entry and Automated Forms Processing–An Example Based on a Study of Patient-Reported Outcomes

    Get PDF
    Background: The clinical and scientific usage of patient-reported outcome measures is increasing in the health services. Often paper forms are used. Manual double entry of data is defined as the definitive gold standard for transferring data to an electronic format, but the process is laborious. Automated forms processing may be an alternative, but further validation is warranted. Methods: 200 patients were randomly selected from a cohort of 5777 patients who had previously answered two different questionnaires. The questionnaires were scanned using an automated forms processing technique, as well as processed by single and double manual data entry, using the EpiData Entry data entry program. The main outcome measure was the proportion of correctly entered numbers at question, form and study level. Results: Manual double-key data entry (error proportion per 1000 fields = 0.046 (95 % CI: 0.001–0.258)) performed better than single-key data entry (error proportion per 1000 fields = 0.370 (95 % CI: 0.160–0.729), (p = 0.020)). There was no statistical difference between Optical Mark Recognition (error proportion per 1000 fields = 0.046 (95 % CI: 0.001–0.258)) and double-key data entry (p = 1.000). With the Intelligent Character Recognition method, there was no statistical difference compared to single-key data entry (error proportion per 1000 fields = 6.734 (95 % CI: 0.817–24.113), (p = 0.656)), as well as double-key data entry (error proportion per 1000 fields = 3.367 (95 % CI: 0.085–18.616)), (p = 0.319))

    Challenges of self-reported medical conditions and electronic medical records among members of a large military cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-reported medical history data are frequently used in epidemiological studies. Self-reported diagnoses may differ from medical record diagnoses due to poor patient-clinician communication, self-diagnosis in the absence of a satisfactory explanation for symptoms, or the "health literacy" of the patient.</p> <p>Methods</p> <p>The US Department of Defense military health system offers a unique opportunity to evaluate electronic medical records with near complete ascertainment while on active duty. This study compared 38 self-reported medical conditions to electronic medical record data in a large population-based US military cohort. The objective of this study was to better understand challenges and strengths in self-reporting of medical conditions.</p> <p>Results</p> <p>Using positive and negative agreement statistics for less-prevalent conditions, near-perfect negative agreement and moderate positive agreement were found for the 38 diagnoses.</p> <p>Conclusion</p> <p>This report highlights the challenges of using self-reported medical data and electronic medical records data, but illustrates that agreement between the two data sources increases with increased surveillance period of medical records. Self-reported medical data may be sufficient for ruling out history of a particular condition whereas prevalence studies may be best served by using an objective measure of medical conditions found in electronic healthcare records. Defining medical conditions from multiple sources in large, long-term prospective cohorts will reinforce the value of the study, particularly during the initial years when prevalence for many conditions may still be low.</p

    Altered Trabecular Bone Structure and Delayed Cartilage Degeneration in the Knees of Collagen VI Null Mice

    Get PDF
    Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1−/− mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1−/− mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1+/+ mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1+/+ mice, but not in Col6a1−/− mice. Col6a1−/− mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1+/+mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1−/− mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data

    High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism

    Get PDF
    The pathways that comprise cellular metabolism are highly interconnected, and alterations in individual enzymes can have far-reaching effects. As a result, global profiling methods that measure gene expression are of limited value in predicting how the loss of an individual function will affect the cell. In this work, we employed a new method of global phenotypic profiling to directly define the genes required for the growth of Mycobacterium tuberculosis. A combination of high-density mutagenesis and deep-sequencing was used to characterize the composition of complex mutant libraries exposed to different conditions. This allowed the unambiguous identification of the genes that are essential for Mtb to grow in vitro, and proved to be a significant improvement over previous approaches. To further explore functions that are required for persistence in the host, we defined the pathways necessary for the utilization of cholesterol, a critical carbon source during infection. Few of the genes we identified had previously been implicated in this adaptation by transcriptional profiling, and only a fraction were encoded in the chromosomal region known to encode sterol catabolic functions. These genes comprise an unexpectedly large percentage of those previously shown to be required for bacterial growth in mouse tissue. Thus, this single nutritional change accounts for a significant fraction of the adaption to the host. This work provides the most comprehensive genetic characterization of a sterol catabolic pathway to date, suggests putative roles for uncharacterized virulence genes, and precisely maps genes encoding potential drug targets

    A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history.

    Get PDF
    PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS
    corecore