1,741 research outputs found

    Experimental quantum key distribution over highly noisy channels

    Full text link
    Error filtration is a method for encoding the quantum state of a single particle into a higher dimensional Hilbert space in such a way that it becomes less sensitive to phase noise. We experimentally demonstrate this method by distributing a secret key over an optical fiber whose noise level otherwise precludes secure quantum key distribution. By filtering out the phase noise, a bit error rate of 15.3% +/- 0.1%, which is beyond the security limit, can be reduced to 10.6% +/- 0.1%, thereby guaranteeing the cryptographic security.Comment: 4 pages, 2 figure

    Economical quantum cloning in any dimension

    Full text link
    The possibility of cloning a d-dimensional quantum system without an ancilla is explored, extending on the economical phase-covariant cloning machine found in [Phys. Rev. A {\bf 60}, 2764 (1999)] for qubits. We prove the impossibility of constructing an economical version of the optimal universal cloning machine in any dimension. We also show, using an ansatz on the generic form of cloning machines, that the d-dimensional phase-covariant cloner, which optimally clones all uniform superpositions, can be realized economically only in dimension d=2. The used ansatz is supported by numerical evidence up to d=7. An economical phase-covariant cloner can nevertheless be constructed for d>2, albeit with a lower fidelity than that of the optimal cloner requiring an ancilla. Finally, using again an ansatz on cloning machines, we show that an economical version of the Fourier-covariant cloner, which optimally clones the computational basis and its Fourier transform, is also possible only in dimension d=2.Comment: 8 pages RevTe

    Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis

    Full text link
    We consider the cloning of sequences of qubits prepared in the states used in the BB84 or 6-state quantum cryptography protocol, and show that the single-qubit fidelity is unaffected even if entire sequences of qubits are prepared in the same basis. This result is of great importance for practical quantum cryptosystems because it reduces the need for high-speed random number generation without impairing on the security against finite-size attacks.Comment: 8 pages, submitted to PR

    Discordance in the minimal inhibitory concentrations of ertapenem for Enterobacter cloacae: Vitek 2 system versus Etest and agar dilution methods

    Get PDF
    Our objective was to compare the ertapenem minimal inhibitory concentrations (MICs) for Enterobacter cloacae isolates categorized intermediate or resistant to ertapenem when measured with the Vitek 2 system, with the MICs for these isolates when measured by two methods performed in agar medium: the Etest and agar plate dilution method (APDM). Overall, 50 E. cloacae isolates were included in the study. The mean MIC of ertapenem was 2.92±1.77μg/ml according to the Vitek 2 system, 0.94±0.84μg/ml according to the Etest strips, and 0.93±0.62μg/ml according to the APDM. Furthermore, the MICs determined by the Vitek 2 system were higher than the MICs determined by the two other methods for 96% of strains. Lastly, according to the Etest strips and APDM, 42% of E. cloacae were susceptible to ertapenem. No carbapenemase was identified by the screening method used. Using the Vitek 2 system to determine ertapenem MICs for E. cloacae can have potential consequences in terms of additional carbapenemase-detecting tests and antimicrobial therapy. It would be interesting to determine if the Vitek 2 system is more effective for the detection of carbapenemase producers with low-level carbapenem resistance than the two methods performed in agar medium

    Size and Shape Dependence of the Electronic Structure of Gold Nanoclusters on TiO2

    Get PDF
    Understanding the mechanism behind the superior catalytic power of single- or few-atom heterogeneous catalysts has become an important topic in surface chemistry. This is particularly the case for gold, with TiO2 being an efficient support. Here we use scanning tunneling microscopy/spectroscopy with theoretical calculations to investigate the adsorption geometry and local electronic structure of several-atom Au clusters on rutile TiO2(110), with the clusters fabricated by controlled manipulation of single atoms. Our study confirms that Au1 and Au2 clusters prefer adsorption at surface O vacancies. Au3 clusters adsorb at O vacancies in a linear-chain configuration parallel to the surface; in the absence of O vacancies they adsorb at Ti5c sites with a structure of a vertically pointing upright triangle. We find that both the electronic structure and cluster–substrate charge transfer depend critically on the cluster size, bonding configuration, and local environment. This suggests the possibility of engineering cluster selectivity for specific catalytic reactions

    The Swift-UVOT ultraviolet and visible grism calibration

    Get PDF
    We present the calibration of the Swift UVOT grisms, of which there are two, providing low-resolution field spectroscopy in the ultraviolet and optical bands respectively. The UV grism covers the range 1700-5000 Angstrom with a spectral resolution of 75 at 2600 Angstrom for source magnitudes of u=10-16 mag, while the visible grism covers the range 2850-6600 Angstrom with a spectral resolution of 100 at 4000 Angstrom for source magnitudes of b=12-17 mag. This calibration extends over all detector positions, for all modes used during operations. The wavelength accuracy (1-sigma) is 9 Angstrom in the UV grism clocked mode, 17 Angstrom in the UV grism nominal mode and 22 Angstrom in the visible grism. The range below 2740 Angstrom in the UV grism and 5200 Angstrom in the visible grism never suffers from overlapping by higher spectral orders. The flux calibration of the grisms includes a correction we developed for coincidence loss in the detector. The error in the coincidence loss correction is less than 20%. The position of the spectrum on the detector only affects the effective area (sensitivity) by a few percent in the nominal modes, but varies substantially in the clocked modes. The error in the effective area is from 9% in the UV grism clocked mode to 15% in the visible grism clocked mode .Comment: 27 pages, 31 figures; MNRAS accepted 23 February 201
    corecore