975 research outputs found

    The Missing Luminous Blue Variables and the Bistability Jump

    Get PDF
    We discuss an interesting feature of the distribution of luminous blue variables on the H-R diagram, and we propose a connection with the bistability jump in the winds of early-type supergiants. There appears to be a deficiency of quiescent LBVs on the S Dor instability strip at luminosities between log L/Lsun = 5.6 and 5.8. The upper boundary, is also where the temperature-dependent S Dor instability strip intersects the bistability jump at about 21,000 K. Due to increased opacity, winds of early-type supergiants are slower and denser on the cool side of the bistability jump, and we postulate that this may trigger optically-thick winds that inhibit quiescent LBVs from residing there. We conduct numerical simulations of radiation-driven winds for a range of temperatures, masses, and velocity laws at log L/Lsun=5.7 to see what effect the bistability jump should have. We find that for relatively low stellar masses the increase in wind density at the bistability jump leads to the formation of a modest to strong pseudo photosphere -- enough to make an early B-type star appear as a yellow hypergiant. Thus, the proposed mechanism will be most relevant for LBVs that are post-red supergiants. Yellow hypergiants like IRC+10420 and rho Cas occupy the same luminosity range as the ``missing'' LBVs, and show apparent temperature variations at constant luminosity. If these yellow hypergiants do eventually become Wolf-Rayet stars, we speculate that they may skip the normal LBV phase, at least as far as their apparent positions on the HR diagram are concerned.Comment: 20 pages, 4 figs, accepted by Ap

    Gamma-rays from binary system with energetic pulsar and Be star with aspherical wind: PSR B1259-63/SS2883

    Get PDF
    At least one massive binary system containing an energetic pulsar, PSR B1259-63/SS2883, has been recently detected in the TeV gamma-rays by the HESS telescopes. These gamma-rays are likely produced by particles accelerated in the vicinity of the pulsar and/or at the pulsar wind shock, in comptonization of soft radiation from the massive star. However, the process of gamma-ray production in such systems can be quite complicated due to the anisotropy of the radiation field, complex structure of the pulsar wind termination shock and possible absorption of produced gamma-rays which might initiate leptonic cascades. In this paper we consider in detail all these effects. We calculate the gamma-ray light curves and spectra for different geometries of the binary system PSR B1259-63/SS2883 and compare them with the TeV gamma-ray observations. We conclude that the leptonic IC model, which takes into account the complex structure of the pulsar wind shock due to the aspherical wind of the massive star, can explain the details of the observed gamma-ray light curve.Comment: 12 pages, 11 figures, accepted for publication in MNRA

    Low-Mass Pre-Main Sequence Stars in the Large Magellanic Cloud - III: Accretion Rates from HST-WFPC2 Observations

    Full text link
    We have measured the present accretion rate of roughly 800 low-mass (~1-1.4 Mo) pre-Main Sequence stars in the field of Supernova 1987A in the Large Magellanic Cloud (LMC, Z~0.3 Zo). It is the first time that this fundamental parameter for star formation is determined for low-mass stars outside our Galaxy. The Balmer continuum emission used to derive the accretion rate positively correlates with the Halpha excess. Both these phenomena are believed to originate from accretion from a circumstellar disk so that their simultaneous detection provides an important confirmation of the pre-Main Sequence nature of the Halpha and UV excess objects, which are likely to be the LMC equivalent of Galactic Classical TTauri stars. The stars with statistically significant excesses are measured to have accretion rates larger than 1.5x10^{-8}Mo/yr at an age of 12-16 Myrs. For comparison, the time scale for disk dissipation observed in the Galaxy is of the order of 6 Myrs. Moreover, the oldest Classical TTauri star known in the Milky Way (TW Hydrae, with 10 Myrs of age) has a measured accretion rate of only 5x10^{-10} Mo/yr, ie 30 times less than what we measure for stars at a comparable age in the LMC. Our findings indicate that metallicity plays a major role in regulating the formation of low-mass stars.Comment: Accepted for publication in the Astrophysical Journal (10 June 2004), 28 pages, 9 figures. Typo corrected in the abstract on 21 February 200

    Polymorphism in the Assembly of Phase-Segregated Block Molecules: Pathway Control to 1D and 2D Nanostructures

    Get PDF
    Nanomaterials with highly ordered, one- or two-dimensional molecular morphologies have promising properties for adaptive materials. Here, we present the synthesis and structural characterization of dinitrohydrazone (hydz) functionalized oligodimethylsiloxanes (oDMSs) of discrete length, which form both 1- and 2D nanostructures by precisely controlling composition and temperature. The morphologies are highly ordered due to the discrete nature of the siloxane oligomers. Columnar, 1D structures are formed from the melt within a few seconds as a result of phase segregation in combination with π-π stacking of the hydrazones. By tuning the length of the siloxane, the synergy between these interactions is observed which results in a highly temperature sensitive material. Macroscopically, this gives a material that switches reversibly and fast between an ordered, solid and a disordered, liquid state at almost equal temperatures. Ordered, 2D lamellar structures are formed under thermodynamic control by cold crystallization of the hydrazones in the amorphous siloxane bulk via a slow process. We elucidate the 1- and 2D morphologies from the nanometer to molecular level by the combined use of solid state NMR and X-ray scattering. The exact packing of the hydrazone rods within the cylinders and lamellae surrounded the liquid-like siloxane matrix is clarified. These results demonstrate that controlling the assembly pathway in the bulk and with that, tuning the nanostructure dimensions and domain spacings, material properties are altered for applications in nanotechnology or thermoresponsive materials

    The Discovery of a P Cygni Analog in M31

    Full text link
    We present spectroscopy and discuss the photometric history of a previously obscure star in M31. The spectrum of the star is an extremely close match to that of P Cygni, one of the archetypes of Luminous Blue Variables (LBVs). The star has not shown much variability over the past 40 years (<0.2<0.2 mag), although small-scale (0.05 mag) variations over a year appear to be real. Nevertheless, the presence of a sub-arcsecond extension around the star is indicative of a past outburst, and from the nebula's size (0.5 pc diameter) we estimate the outburst took place roughly 2000 yrs ago. P Cygni itself exhibits a similar photometric behavior, and has a similar nebula (0.2 pc diameter). We argue that this may be more typical behavior for LBVs than commonly assumed. The star's location in the HR diagram offers substantial support for stellar evolutionary models that include the effects of rotation, as the star is just at a juncture in the evolutionary track of a 85Mo star. The star is likely in a transition from an O star to a late-type WN Wolf-Rayet.Comment: To appear in ApJ (Letters

    Discovery and quantitative spectral analysis of an Ofpe/WN9 (WN11) star in the Sculptor spiral galaxy NGC 300

    Get PDF
    We have discovered an Ofpe/WN9 (WN11 following Smith et al.) star in the Sculptor spiral galaxy NGC 300, the first object of this class found outside the Local Group, during a recent spectroscopic survey of blue supergiant stars obtained at the ESO VLT. The light curve over a five-month period in late 1999 displays a variability at the 0.1 mag level. The intermediate resolution spectra (3800-7200 A) show a very close resemblance to the Galactic LBV AG Car during minimum. We have performed a detailed non-LTE analysis of the stellar spectrum, and have derived a chemical abundance pattern which includes H, He, C, N, O, Al, Si and Fe, in addition to the stellar and wind parameters. The derived stellar properties and the He and N surface enrichments are consistent with those of other Local Group WN11 stars in the literature, suggesting a similar quiescent or post-LBV evolutionary status.Comment: 9 pages, 4 figures, 2 tables. Accepted for publication in the Astrophysical Journal Letter

    Observations of H3+ in the Diffuse Interstellar Medium

    Get PDF
    Surprisingly large column densities of H3+ have been detected using infrared absorption spectroscopy in seven diffuse cloud sightlines (Cygnus OB2 12, Cygnus OB2 5, HD 183143, HD 20041, WR 104, WR 118, and WR 121), demonstrating that H3+ is ubiquitous in the diffuse interstellar medium. Using the standard model of diffuse cloud chemistry, our H3+ column densities imply unreasonably long path lengths (~1 kpc) and low densities (~3 cm^-3). Complimentary millimeter-wave, infrared, and visible observations of related species suggest that the chemical model is incorrect and that the number density of H3+ must be increased by one to two orders of magnitude. Possible solutions include a reduced electron fraction, an enhanced rate of H2 ionization, and/or a smaller value of the H3+ dissociative recombination rate constant than implied by laboratory experiments.Comment: To be published in Astrophysical Journal, March 200

    Stellar winds from Massive Stars

    Get PDF
    We review the various techniques through which wind properties of massive stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet (WR) stars and cool supergiants - are derived. The wind momentum-luminosity relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss rates of O stars and blue supergiants which is superior to previous parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence, Magellanic Cloud O star mass-loss rates are typically matched to within a factor of two for various calibrations. Stellar winds from LBVs are typically denser and slower than equivalent B supergiants, with exceptional mass-loss rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001). Recent mass-loss rates for Galactic WR stars indicate a downward revision of 2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997), although evidence for a metallicity dependence remains inconclusive (Crowther 2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants from alternative techniques remain highly contradictory. Recent Galactic and LMC results for RSG reveal a large scatter such that typical mass-loss rates lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren ed.), Kluwe
    corecore