We have measured the present accretion rate of roughly 800 low-mass (~1-1.4
Mo) pre-Main Sequence stars in the field of Supernova 1987A in the Large
Magellanic Cloud (LMC, Z~0.3 Zo). It is the first time that this fundamental
parameter for star formation is determined for low-mass stars outside our
Galaxy. The Balmer continuum emission used to derive the accretion rate
positively correlates with the Halpha excess. Both these phenomena are believed
to originate from accretion from a circumstellar disk so that their
simultaneous detection provides an important confirmation of the pre-Main
Sequence nature of the Halpha and UV excess objects, which are likely to be the
LMC equivalent of Galactic Classical TTauri stars. The stars with statistically
significant excesses are measured to have accretion rates larger than
1.5x10^{-8}Mo/yr at an age of 12-16 Myrs. For comparison, the time scale for
disk dissipation observed in the Galaxy is of the order of 6 Myrs. Moreover,
the oldest Classical TTauri star known in the Milky Way (TW Hydrae, with 10
Myrs of age) has a measured accretion rate of only 5x10^{-10} Mo/yr, ie 30
times less than what we measure for stars at a comparable age in the LMC. Our
findings indicate that metallicity plays a major role in regulating the
formation of low-mass stars.Comment: Accepted for publication in the Astrophysical Journal (10 June 2004),
28 pages, 9 figures. Typo corrected in the abstract on 21 February 200