71 research outputs found

    Bidding evidence for primate vocal learning and the cultural substrates for speech evolution

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programunder the Marie SkƂodowska-Curie Grant Agreement No. 702137 attributed to the author.Speech evolution seems to defy scientific explanation. Progress on this front has been jammed in an entrenched orthodoxy about what great apes can and (mostly) cannot do vocally, an idea epitomized by the Kuypers/JĂŒrgens hypothesis. Findings by great ape researchers paint, however, starkly different and more optimistic landscapes for speech evolution. Over twenty studies qualify as positive evidence for primate vocal (production) learning following accepted terminology. Additionally, the Kuypers/JĂŒrgens hypothesis shows low etymological, empirical, and theoretical soundness. Great apes can produce novel voiced calls and voluntarily control their modification − observations supposedly impossible. Furthermore, no valid pretext justifies dismissing heuristically the production of new voiceless consonant-like calls by great apes. To underscore this point, new evidence is provided for a novel supra-genera voiceless call across all great ape species. Their vocal invention and vocal learning faculties are real and sufficiently potent to, at times, uphold vocal traditions. These data overpower conventional predicaments in speech evolution theory and will help to make new strides explaining why, among hominids, only humans developed speech.PostprintPeer reviewe

    Open plains are not a level playing field for hominid consonant‑like versus vowel‑like calls

    Get PDF
    Africa’s paleo-climate change represents an “ecological black-box” along the evolutionary timeline of spoken language; a vocal hominid went in and, millions of years later, out came a verbal human. It is unknown whether or how a shift from forested, dense habitats towards drier, open ones affected hominid vocal communication, potentially setting stage for speech evolution. To recreate how arboreal proto-vowels and proto-consonants would have interacted with a new ecology at ground level, we assessed how a series of orangutan voiceless consonant-like and voiced vowel-like calls travelled across the savannah. Vowel-like calls performed poorly in comparison to their counterparts. Only consonant-like calls afforded effective perceptibility beyond 100 m distance without requiring repetition, as is characteristic of loud calling behaviour in nonhuman primates, typically composed by vowel-like calls. Results show that proto-consonants in human ancestors may have enhanced reliability of distance vocal communication across a canopy-to-ground ecotone. The ecological settings and soundscapes experienced by human ancestors may have had a more profound impact on the emergence and shape of spoken language than previously recognized

    Great apes reach momentary altered mental states by spinning.

    Get PDF
    Among animals, humans stand out in their consummate propensity to self-induce altered states of mind. Archaeology, history and ethnography show these activities have taken place since the beginnings of civilization, yet their role in the emergence and evolution of the human mind itself remains debatable. The means through which modern humans actively alter their experience of self and reality frequently depend on psychoactive substances, but it is uncertain whether psychedelics or other drugs were part of the ecology or culture of pre-human ancestors. Moreover, (nonhuman) great apes in captivity are currently being retired from medical research, rendering comparative approaches thus far impracticable. Here, we circumvent this limitation by harnessing the breadth of publicly available YouTube data to show that apes engage in rope spinning during solitary play. When spinning, the apes achieved speeds sufficient to alter self-perception and situational awareness that were comparable to those tapped for transcendent experiences in humans (e.g. Sufi whirling), and the number of revolutions spun predicted behavioural evidence for dizziness. Thus, spinning serves as a self-sufficient means of changing body-mind responsiveness in hominids. A proclivity for such experiences is shared between humans and great apes, and provides an entry point for the comparative study of the mechanisms, functions, and adaptive value of altered states of mind in human evolution. [Abstract copyright: © 2023. The Author(s).

    Time-space–displaced responses in the orangutan vocal system

    Get PDF
    The study was funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie SkƂodowska-Curie grant agreement no. 702137 attributed to A.R.L.One of the defining features of language is displaced reference—the capacity to transmit information about something that is not present or about a past or future event. It is very rare in nature and has not been shown in any nonhuman primate, confounding, as such, any understanding of its precursors and evolution in the human lineage. Here, we describe a vocal phenomenon in a wild great ape with unparalleled affinities with displaced reference. When exposed to predator models, Sumatran orangutan mothers temporarily suppressed alarm calls up to 20 min until the model was out of sight. Subjects delayed their vocal responses in function of perceived danger for themselves, but four major predictions for stress-based mechanisms were not met. Conversely, vocal delay was also a function of perceived danger for another—an infant—suggesting high-order cognition. Our findings suggest that displaced reference in language is likely to have originally piggybacked on akin behaviors in an ancestral hominid.Publisher PDFPeer reviewe

    Life of p : a consonant older than speech

    Get PDF
    Which sounds composed the first spoken languages? Archetypal sounds are not phylogenetically or archeologically recoverable, but comparative linguistics and primatology provide an alternative approach. Labial articulations are the most common speech sound, being virtually universal across the world's languages. Of all labials, the plosive ‘p’ sound, as in ‘Pablo Picasso’, transcribed /p/, is the most predominant voiceless sound globally and one of the first sounds to emerge in human infant canonical babbling. Global omnipresence and ontogenetic precocity imply that /p/-like sounds could predate the first major linguistic diversification event(s) in humans. Indeed, great ape vocal data support this view, namely, the only cultural sound shared across all great ape genera is articulatorily homologous to a rolling or trilled /p/, the ‘raspberry’. /p/-like labial sounds represent an ‘articulatory attractor’ among living hominids and are likely among the oldest phonological features to have ever emerged in linguistic systems

    Automatic Sound Event Detection and Classification of Great Ape Calls Using Neural Networks

    Full text link
    We present a novel approach to automatically detect and classify great ape calls from continuous raw audio recordings collected during field research. Our method leverages deep pretrained and sequential neural networks, including wav2vec 2.0 and LSTM, and is validated on three data sets from three different great ape lineages (orangutans, chimpanzees, and bonobos). The recordings were collected by different researchers and include different annotation schemes, which our pipeline preprocesses and trains in a uniform fashion. Our results for call detection and classification attain high accuracy. Our method is aimed to be generalizable to other animal species, and more generally, sound event detection tasks. To foster future research, we make our pipeline and methods publicly available.Comment: Accepted at ICPhS 2023 (Poster

    Acoustic models of orangutan hand-assisted alarm calls

    Get PDF
    B.d.B. was funded by the European research council starting grant ABACUS project and the Innoviris ‘Brains back to Brussels’ programme. S.A.W. was funded by the Netherlands Organisation for Scientific Research NWO. A.R.L. was funded by the Menken Funds (University of Amsterdam).Orangutans produce alarm calls called kiss-squeaks, which they sometimes modify by putting a hand in front of their mouth. Through theoretical models and observational evidence, we show that using the hand when making a kiss-squeak alters the acoustics of the production in such a way that more formants per kilohertz are produced. Our theoretical models suggest that cylindrical wave propagation is created with the use of the hand and face as they act as a cylindrical extension of the lips. The use of cylindrical wave propagation in animal calls appears to be extremely rare, but is an effective way to lengthen the acoustic system; it causes the number of resonances per kilohertz to increase. This increase is associated with larger animals, and thus using the hand in kiss-squeak production may be effective in exaggerating the size of the producer. Using the hand appears to be a culturally learned behavior, and therefore orangutans may be able to associate the acoustic effect of using the hand with potentially more effective deterrence of predators.Publisher PDFPeer reviewe

    Animal vocal sequences: not the Markov chains we thought they were.

    Get PDF
    Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins.This is the author's accepted manuscript and will be under embargo until the 20th of August 2015. This final version is published by Royal Society Publishing here: http://dx.doi.org/10.1098/rspb.2014.1370

    Speech-like rhythm in a voiced and voiceless orangutan call

    Get PDF
    A.R.L. thanks the Menken Funds of the University of Amsterdam.The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∌5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i) Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii) speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii) speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined "clicks" and "faux-speech." Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech antecedents within the primate lineage, and highlight potential articulatory homologies between great ape calls and human consonants and vowels.Publisher PDFPeer reviewe
    • 

    corecore