73 research outputs found

    How Automated Market Makers Approach the Thin Market Problem in Cryptoeconomic Systems

    Full text link
    The proper design of automated market makers (AMMs) is crucial to enable the continuous trading of assets represented as digital tokens on markets of cryptoeconomic systems. Improperly designed AMMs can make such markets suffer from the thin market problem (TMP), which can cause cryptoeconomic systems to fail their purposes. We developed an AMM taxonomy that showcases AMM design characteristics. Based on the AMM taxonomy, we devised AMM archetypes implementing principal solution approaches for the TMP. The main purpose of this article is to support practitioners and researchers in tackling the TMP through proper AMM designs

    How Automated Market Makers Approach the Thin Market Problem in Cryptoeconomic Systems

    Get PDF
    The proper design of automated market makers (AMMs) is crucial to enable the continuous trading of assets represented as digital tokens on markets of cryptoeconomic systems. Improperly designed AMMs can make such markets suffer from the thin market problem (TMP), which can cause cryptoeconomic systems to fail their purposes. We developed an AMM taxonomy that showcases AMM design characteristics. Based on the AMM taxonomy, we devised AMM archetypes that implement principal solution approaches for the TMP. The main purpose of this article is to support practitioners and researchers in tackling the TMP through proper AMM designs

    Coronavirus is a breeding ground for conspiracy theories – here’s why that’s a serious problem

    Get PDF
    The novel coronavirus continues to spread around the world, with new cases being reported all the time. Spreading just as fast, it seems, are conspiracy theories that claim powerful actors are plotting something sinister to do with the virus. Our research into medical conspiracy theories shows that this has the potential to be just as dangerous for societies as the outbreak itself

    Atroposelective Synthesis of Isoriccardin C through a C−H Activated Heck Type Macrocyclization

    Get PDF
    Macrocyclization is typically the key step in syntheses of cyclophane‐type natural products. Considering compounds with axially chiral biaryl moieties, the control of atroposelectivity is essential for biological activity and is synthetically challenging. Herein we report on atroposelective macrocyclization involving an oxidative Heck type process and enabling the first atropo‐enantiopure synthesis of isoriccardin C. A chiral sulfinyl auxiliary in the ortho‐position of a biaryl axis (still flexible) was used to induce a C−H activated atropodiastereoselective oxidative Heck coupling (>98 % de). The traceless character of the sulfinyl auxiliary enables the introduction of a hydroxy group to give the target molecule with >98 % ee as well

    Modeling Perennial Bioenergy Crops in the E3SM Land Model (ELMv2)

    Get PDF
    Perennial bioenergy crops are increasingly important for the production of ethanol and other renewable fuels, and as part of an agricultural system that alters the climate through its impact on biogeophysical and biogeochemical properties of the terrestrial ecosystem. Few Earth System Models (ESMs) represent such crops, however. In this study, we expand the Energy Exascale Earth System Land Model to include perennial bioenergy crops with a high potential for mitigating climate change. We focus on high-productivity miscanthus and switchgrass, estimating various parameters associated with their different growth stages and performing a global sensitivity analysis to identify and optimize these parameters. The sensitivity analysis identifies five parameters associated with phenology, carbon/nitrogen allocation, stomatal conductance, and maintenance respiration as the most sensitive parameters for carbon and energy fluxes. We calibrated and validated the model against observations and found that the model closely captures the observed seasonality and the magnitude of carbon fluxes. The validated model represents the latent heat flux fairly well, but sensible heat flux for miscanthus is not well captured. Finally, we validated the model against observed leaf area index (LAI) and harvest amount and found modeled LAI captured observed seasonality, although the model underestimates LAI and harvest amount. This work provides a foundation for future ESM analyses of the interactions between perennial bioenergy crops and carbon, water, and energy dynamics in the larger Earth system, and sets the stage for studying the impact of future biofuel expansion on climate and terrestrial systems

    BAAD: a Biomass And Allometry Database for woody plants

    Get PDF
    Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub‐sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross‐section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the world\u27s vegetation
    corecore