
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

1-1-2023 

Modeling Perennial Bioenergy Crops in the E3SM Land Model Modeling Perennial Bioenergy Crops in the E3SM Land Model 

(ELMv2) (ELMv2) 

Eva Sinha 
Pacific Northwest National Laboratory 

Katherine V. Calvin 
Pacific Northwest National Laboratory 

Ben Bond-Lamberty 
Pacific Northwest National Laboratory 

Beth A. Drewniak 
Argonne National Laboratory 

Daniel M. Ricciuto 
Oak Ridge National Laboratory 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

 Part of the Agriculture Commons 

Sinha, Eva; Calvin, Katherine V.; Bond-Lamberty, Ben; Drewniak, Beth A.; Ricciuto, Daniel M.; Sargsyan, 
Khachik; Cheng, Yanyan; Bernacchi, Carl; and Moore, Caitlin E., "Modeling Perennial Bioenergy Crops in the 
E3SM Land Model (ELMv2)" (2023). Publications from USDA-ARS / UNL Faculty. 2591. 
https://digitalcommons.unl.edu/usdaarsfacpub/2591 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/2591?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F2591&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Eva Sinha, Katherine V. Calvin, Ben Bond-Lamberty, Beth A. Drewniak, Daniel M. Ricciuto, Khachik 
Sargsyan, Yanyan Cheng, Carl Bernacchi, and Caitlin E. Moore 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usdaarsfacpub/2591 

https://digitalcommons.unl.edu/usdaarsfacpub/2591
https://digitalcommons.unl.edu/usdaarsfacpub/2591


1. Introduction
Cropland occupies 11% of the global land (FAO, 2021; Klein Goldewijk et al., 2017) and can alter the regional 
and global climate through biogeochemical and biophysical impacts on the land surface (D. L. Lombardozzi 
et al., 2020; Seguin et al., 2007). Examples of biogeochemical impacts include large increase in CO2 emissions 
resulting from the replacement of native vegetation with cropland (Fargione et al., 2008; Seguin et al., 2007). 
Although increased agricultural productivity results in enhanced CO2 uptake during the growing season, different 
management practices can result in net increase in CO2 and other greenhouse gas emissions such as methane and 
nitrous oxide (Searchinger et al., 2008; Verge et al., 2007). The biophysical impacts on the land surface include 
modification of the surface energy and water budget. For example, agricultural intensification and the resulting 
increase in evapotranspiration causes a decrease in extreme summer temperature and an increase in precipitation 
(Mueller et al., 2016) while the use of cover crops impacts regional temperature and causes warmer winters (D. 
Lombardozzi et al., 2018).

Earth System Models (ESMs) that are used for climate projections should have adequate representation of 
crops due to the impact of agriculture on regional and global climate. However, most ESMs represent crops 

Abstract Perennial bioenergy crops are increasingly important for the production of ethanol and 
other renewable fuels, and as part of an agricultural system that alters the climate through its impact on 
biogeophysical and biogeochemical properties of the terrestrial ecosystem. Few Earth System Models 
(ESMs) represent such crops, however. In this study, we expand the Energy Exascale Earth System Land 
Model to include perennial bioenergy crops with a high potential for mitigating climate change. We focus on 
high-productivity miscanthus and switchgrass, estimating various parameters associated with their different 
growth stages and performing a global sensitivity analysis to identify and optimize these parameters. The 
sensitivity analysis identifies five parameters associated with phenology, carbon/nitrogen allocation, stomatal 
conductance, and maintenance respiration as the most sensitive parameters for carbon and energy fluxes. We 
calibrated and validated the model against observations and found that the model closely captures the observed 
seasonality and the magnitude of carbon fluxes. The validated model represents the latent heat flux fairly well, 
but sensible heat flux for miscanthus is not well captured. Finally, we validated the model against observed 
leaf area index (LAI) and harvest amount and found modeled LAI captured observed seasonality, although the 
model underestimates LAI and harvest amount. This work provides a foundation for future ESM analyses of 
the interactions between perennial bioenergy crops and carbon, water, and energy dynamics in the larger Earth 
system, and sets the stage for studying the impact of future biofuel expansion on climate and terrestrial systems.

Plain Language Summary Perennial bioenergy crops are not well represented in global land 
models, despite projected increase in their production. Our study expands Energy Exascale Earth System Land 
Model to include perennial bioenergy crops and calibrates the model for miscanthus and switchgrass. The 
calibrated model captures the seasonality and magnitude of carbon and energy fluxes. This study provides the 
foundation for future research examining the impact of perennial bioenergy crop expansion.
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as generic-grass that fails to capture the various phenological phases of crops and differences across various 
crop species (Levis, 2010; McDermid et al., 2017; Moore et al., 2021). This simplistic representation of crops 
underestimates gross primary productivity and latent heat flux from agricultural regions (D. L. Lombardozzi 
et al., 2020). To address this shortcoming and to improve the simulation of carbon and water fluxes, several land 
model components of ESMs are now simulating major crops, including the Community Land Model (Drewniak 
et al., 2013; Levis et al., 2012), E3SM land model (Golaz et al., 2022), Joint UK Land Environment Simula-
tor (JULES) (Osborne et  al., 2015), Noah-MP-Crop (Liu et  al., 2016), Organizing Carbon and Hydrology In 
Dynamic Ecosystems (ORCHIDEE) (Wu et al., 2016), and Simple Biosphere Model (Lokupitiya et al., 2009).

Perennial bioenergy crops are however not well represented in ESMs, despite large increases in bioenergy 
production projected in modeled socioeconomic pathways for meeting future energy demands and for mitigating 
climate change. Energy crops are expected to account for a significant portion of bioenergy in the U.S. by 2040 
(Langholtz et al., 2016). The quantity of bioenergy production required in the future is highly uncertain and will 
depend on the future energy demand and radiative forcing level, among other factors. For example, it is estimated 
that to limit future warming to 1.5°C, 40–310 EJ yr −1 of bioenergy will be required (IPCC, 2018). Another study 
estimates future land area required for bioenergy production to range between 120 and 470 million ha for the 
RCP4.5 mitigation scenario and between 250 and 1,500 million ha for the RCP2.6 mitigation scenario (Popp 
et al., 2017). To understand the impact of such increased biomass production on carbon, water, and energy fluxes, 
perennial bioenergy crops should be adequately represented in ESMs including optimizing various crop param-
eters and quantifying the parametric uncertainty. This has been achieved in select land components of ESMs. 
For example, Song et al. (2015) incorporated Miscanthus × giganteus (miscanthus) and two different varieties 
of switchgrass in Integrated Science Assessment Model and used it to study the spatial and temporal patterns 
in biomass yield in the eastern United States. Zhu et al. (2017) parameterized and validated Community Land 
Model (CLM) version 4.5 for miscanthus and switchgrass and estimated carbon and surface energy balance from 
the growth of these crops across the Continental United States. Li, Yue, et al. (2018) implemented four major 
perennial bioenergy crops in the global dynamic vegetation model, ORCHIDEE, and utilized it to compare simu-
lated versus observed biomass yield. Cheng et al. (2020) incorporated two perennial bioenergy crops into CLM 
version 5 and found that compared to traditional bioenergy crops, perennial crops have higher carbon uptake and 
lower nutrient requirement that increases their suitability for future bioenergy production. Littleton et al. (2020) 
modified JULES land surface model to simulate the growth and harvest of perennial bioenergy crops and applied 
the updated model for estimating global annual yield of miscanthus under the future climate.

Comprehensively calibrating ESMs crop parameters poses a significant challenge due to the large number of 
parameters and considerable computational cost of calibration. ESMs simulate various terrestrial and bioge-
ochemical processes by utilizing a vast array of parameters that can contribute large uncertainties in model 
predictions (Lambert et al., 2013; Qian et al., 2018). The ESM crop-models often use default global parameter 
values rather than region-specific values that results in large biases between model simulated and observed fluxes 
(Cheng et al., 2021). These biases can be reduced by calibrating the model and finding the optimal parameter 
ranges (Lu et  al.,  2018). Model calibration is often preceded by sensitivity analysis for identifying the most 
influential parameters for various model outputs (Ricciuto et al., 2018). However, model complexity and long 
simulation time required for achieving biogeochemical equilibrium makes sensitivity analysis and calibration 
computationally expensive. These challenges have caused several studies to either modify the crop parameters 
based on values in literature or field observations (Boas et al., 2021; Li, Yue, et al., 2018; Zhu et al., 2017), or 
to calibrate the model by utilizing one-at-time approach that varies a single model parameter at a time (Cheng 
et al., 2020; Littleton et al., 2020; Song et al., 2013, 2015). However, both these approaches fail to account for 
the impact of joint parameter variability on model outputs (Qian et al., 2018; Ricciuto et al., 2018). To overcome 
these challenges, studies are now constructing ESM surrogates followed up by global sensitivity analysis (GSA) 
and model calibration using these surrogates (Lu & Ricciuto, 2019; Lu et al., 2018; Ricciuto et al., 2018).

The objective of this study is to expand the crop modeling capability of the Energy Exascale Earth System 
Model (E3SM) land component (ELMv2) to include perennial crops that have phenological stages distinct 
from annual crops. The expanded crop model is parameterized for two perennial bioenergy crops—miscanthus 
(Miscanthus × giganteus) and switchgrass (Panicum virgatum L.). The model parameterization is achieved by 
calibrating simulated carbon and energy fluxes that is performed by developing ELM surrogates, conducting a 
GSA, and carrying out Bayesian calibration using carbon and energy flux measurements. The model is validated 
by utilizing leaf area index (LAI) and harvest measurements.
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2. Model Development
The E3SM land model version 2 (ELMv2) is branched from CLM version 4.5 (CLM4.5) (Oleson et al., 2013). 
Major additions to ELM since diverging from CLM4.5 include improved representation of atmospheric aerosols, 
a minor bug fix in evaporation estimation from permeable surfaces, an updated scheme for calculation of leaf 
stomatal conductance, and modification to the nighttime albedo calculation. These differences between ELM and 
CLM4.5 are described in more detail in Golaz et al. (2019), Burrows et al. (2020), and Ricciuto et al. (2018). 
For capturing the impact of agriculture on climate and vice-versa, ELM includes representation of annual crops, 
maize, soybean, and spring wheat in its crop model (Drewniak et al., 2013; Levis et al., 2012). Recent updates to 
the crop model include the implementation of dynamic root modeling (Drewniak, 2019) and climate driven plant-
ing date estimation. The crop models in both CLM4.5 and ELM do not include representation of perennial crops. 
Perennial crops are distinctly different from annual crops. For example, differences in albedo and rooting depth 
result in increased evapotranspiration in perennial crops that can have a cooling effect (Georgescu et al., 2011). 
Additionally, perennial crops such as miscanthus and switchgrass require fewer fertilizer inputs and reduce nitro-
gen leaching compared with maize and soybean (Smith et  al.,  2013). As such, fertilizer was applied to both 
bioenergy crops after crop emergence at the default rate of 84 kg ha −1 yr −1 over a period of 20 days to maximize 
nitrogen utilization by plants and minimize nitrogen loss through denitrification. This study implements perennial 
crop modeling in ELM and the subsections below describe the phenology, carbon and nitrogen allocation, and 
harvest for perennial crops.

2.1. Phenology

The perennial crop phenology consisted of three distinct phases: crop emergence, leaf onset, and leaf senescence. 
The perennial crops are planted once and the crops re-grow from underground lignotubers each year. In ELM, 
the crop plantation in the first year and re-emergence in the following years occurs between the minimum and 
maximum plant emergence date when the temperature thresholds are met (Equations 1–3).

𝑇𝑇10𝑑𝑑 < 𝑇𝑇 𝑝𝑝 (1)

𝑇𝑇 min

10𝑑𝑑
< 𝑇𝑇

min

𝑝𝑝 (2)

𝑑𝑑
min

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 𝑗𝑗𝑑𝑑𝑝𝑝𝑗𝑗 ≤ 𝑑𝑑
max

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (3)

where T10d is the 10-day running mean of T2m (the simulated 2-m air temperature during each model time step) 

and 𝐴𝐴 𝐴𝐴 min

10𝑑𝑑
 is the 10-day running mean of 𝐴𝐴 𝐴𝐴 min

2𝑚𝑚
 (the daily minimum of T2m). 𝐴𝐴 𝑇𝑇 𝑝𝑝 and 𝐴𝐴 𝑇𝑇

min

𝑝𝑝  are crop-specific coldest 

plant emergence temperatures. 𝐴𝐴 𝑑𝑑
min

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐴𝐴 𝑑𝑑
max

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the crop-specific minimum and maximum plant emergence 
date, respectively, and jday is the Julian day. All variables with an accent bar are model parameters and ones 

without an accent bar are model estimated values. The 𝐴𝐴 𝑇𝑇
min

𝑝𝑝  parameter was set to 273.15 K and 𝐴𝐴 𝑑𝑑
min

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐴𝐴 𝑑𝑑
max

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
parameters were set to 1 March and 1 May, respectively for both miscanthus and switchgrass.

The leaf onset starts when the growing degree days (GDDs) accumulated (Equation 4) since plant emergence 
exceeds the crop-specific minimum GDD requirement (Equation 5).

𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛−1 + (𝑇𝑇𝑠𝑠𝑠3 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓) × 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 (4)

𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛
= 𝐺𝐺𝐺𝐺𝐺𝐺

min (5)

where GDD n is the GDD accumulated at time step n (°day), Ts,3 is the temperature of the third soil layer (K), 

Tfrz is the freezing point of water (273.15 K), fday is the model time step (day), 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺
min

 is the minimum GDD 
requirement (°day).

The leaf senescence occurs when the temperature and leaf age criteria are met (Equations 6–7).

𝑇𝑇10𝑑𝑑 < 𝑇𝑇 𝑠𝑠 (6)
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𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 > 𝑛𝑛min (7)

where 𝐴𝐴 𝑇𝑇 𝑠𝑠 is the crop-specific senescence temperature, ndays on is the leaf age in days, and 𝐴𝐴 𝑛𝑛min is the crop-specific 
minimum leaf age.

2.2. C and N Allocation

Similar to the annual crops being modeled in ELM, carbon and nitrogen assimilation in the perennial crops is 
based on phenological stages. The carbon/nitrogen (CN) allocation is simulated throughout the growing period; 
starting in the leaves, stem, and fine roots with leaf emergence, and ending at the time of the harvest. The CN 
ratios in the leaf, stem, and roots vary all through the growth period and are modeled based on CLM4.5 carbon 
and nitrogen allocation scheme (Oleson et al., 2013). Time varying allocation coefficients are used for estimating 
the fraction of carbon that is assigned to the leaf, steam, and fine roots (Equations 8–10). These coefficients are 
similar to the allocation coefficients used for annual crop phase between leaf emergence and grain fill. The stem 
and fine root coefficients are the same as the annual crop coefficients while the leaf coefficient has 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 
(GDDs required for maturity) replacing the heat unit index of the annual crops.

𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑎𝑎
𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −

(

𝑎𝑎
𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑎𝑎
𝑓𝑓

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

)

𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇 2𝑚𝑚

𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑎𝑎𝑓𝑓

𝑤𝑤𝑤𝑤𝑤𝑓𝑓𝑤𝑤
𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇 2𝑚𝑚

𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑎𝑎𝑓𝑓

≤ 1 (8)

𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙 = (1 − 𝑎𝑎𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

𝑎𝑎
𝑖𝑖

𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙

(

𝑙𝑙−𝑏𝑏 − 𝑙𝑙
−𝑏𝑏

𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇 2𝑚𝑚

𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑎𝑎𝑓𝑓

)

𝑙𝑙−𝑏𝑏 − 1

 (9)

𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 − 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙 − 𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑓𝑓 (10)

where, 𝐴𝐴 𝑎𝑎
𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝐴𝐴 𝑎𝑎
𝑓𝑓

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 , and 𝐴𝐴 𝑎𝑎

𝑖𝑖

𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙 are initial and final values of root and leaf carbon allocation coefficients. 𝐴𝐴 𝑏𝑏 is an 

exponential factor used in leaf carbon allocation, 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 is the GDD required for the crop to reach maturity, and 
GDDT2m is the GDD for 2m air temperature.

2.3. Harvest

The perennial crop harvest occurs as soon as the leaf senescence (Equations 6–7) criteria are met. During harvest, 
most of the C and N stored in above-ground biomass comprised of leaf and live stem are removed. To account for 
maximum conversion of above-ground biomass to harvest, 95% of the available C and N is converted for food/
biofuel production and the remainder is transferred to the litter pool. This removal rate is higher than the 70% 
removal rate considered in CLM (Cheng et al., 2020; Zhu et al., 2017). The carbon content of harvested biomass 
is divided by 0.447 to convert it to harvest yield (Zeri et al., 2013).

3. Model Evaluation
In order to identify the impact of model parameters on output quantities of interests (QoIs), as well as to quantify 
and reduce predictive variance associated with these uncertain parameters, we will first construct a surrogate 
approximation of the model across a range of variability of the parameters, followed by GSA, and Bayesian cali-
bration of this pre-constructed surrogate.

3.1. Model Simulation and Surrogate Construction

A total of 20 perennial crop parameters related to crop phenology, CN allocation, and photosynthetic capacity 
were selected for the surrogate construction, GSA and model calibration (Table 1). We identified the input range 
for these parameters through literature review. If an input range for a parameter was not available in the literature 
then it was set based on expert judgment. The 20 parameters were randomly varied within their input range for 
2,000 ELM simulations. We used the Offline Land Model Testbed (Ricciuto, 2022) for 2,000 ensemble ELM 
runs, each of which ran for 200 years in the accelerated spin-up mode and 200 years in the non-accelerated 
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spin-up mode, followed by a transient run from 1850 to 2008. For the transient run meteorological forcing data 
collected at the site was used for model simulation (Section 3.3). The model output was postprocessed by estimat-
ing daily average over the last 10 years of the transient run for the four output QoIs—gross primary productivity 
(GPP), ecosystem respiration (ER), latent heat flux (LE), and sensible heat flux (H). The estimated daily average 
for all ensemble members was then used for developing surrogates for each day of the year and for all four QoIs. 
We employed polynomial chaos surrogate form for developing surrogates as it provides flexible representation 
of the inputs and outputs as random variables (Ghanem & Spanos, 1991), and, at the same time, allows for exact 
analytical extraction of global sensitivity indices via variance decomposition (Crestaux et al., 2009). We utilized 
1,600 of the 2,000 ELM simulations for developing the polynomial chaos surrogates and 400 simulations for test-
ing the accuracy of the surrogates. In our case, where the inputs are randomly and uniformly sampled over their 
respective ranges, the surrogate construction reduces to a polynomial regression (Sargsyan, 2017). Finally, due to 
large number of input parameters, we employed Bayesian compressive sensing algorithm (Ricciuto et al., 2018; 
Sargsyan et al., 2014) to regularize the regression, arriving at a sparse polynomial set with only the relevant poly-
nomial chaos bases activated. The surrogate construction, the associated GSA as well as the surrogate-enabled 
model calibration are carried out using the UQ Toolkit (Debusschere et al., 2016).

3.2. Global Sensitivity Analysis

Sobol sensitivity indices were used to examine the impact of parametric uncertainty on model outputs (Saltelli 
et  al., 2010; Sobol, 2001). These indices provide an estimate of the fraction of variance contributed by each 
parameter or group of parameters toward the total variance in the output variable (Ricciuto et  al.,  2018). A 
major convenience of using PC polynomial chaos surrogates is that one can extract the sensitivity indices with 

Table 1 
Descriptions, Input Ranges, and Sources of Information Used for the 20 Input Parameters Varied in This Study

Parameter ELM variable Units Description Minimum Maximum Source

𝐴𝐴 𝑇𝑇 𝑝𝑝 planting_temp K Average 10-day temperature required for plant emergence 275 285 1

𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺
min

 gddmin °day Minimum growing degree days 50 320 2

𝐴𝐴 𝑇𝑇 𝑠𝑠 senescence_temp K Average 10-day temperature for leaf senescence 280 290 1

𝐴𝐴 𝑛𝑛min min_days_senes days Minimum leaf age to allow for leaf senescence 90 120 3

𝐴𝐴 𝑎𝑎
𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 arooti – Root CN allocation coefficient 0.05 0.3 4

𝐴𝐴 𝑎𝑎
𝑓𝑓

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 arootf – Root CN allocation coefficient 0.05 0.2 4

𝐴𝐴 𝑎𝑎
𝑖𝑖

𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙 fleafi – Leaf CN allocation coefficient 0.5 0.95 4

𝐴𝐴 𝑏𝑏  bfact – Exponential factor for leaf CN allocation 0.05 0.15 2

𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 hybgdd °day Growing degree days required for maturity 1,600 2,000 2

leafcn gC gN −1 Leaf CN ratio 15 35 2
livewdcn gC gN −1 Live wood CN ratio 40 60 2
frootcn gC gN −1 Fine root CN ratio 20 50 5
graincn gC gN −1 Grain CN ratio 25 60 6
laimx – Maximum leaf area index used in CNVegStructUpdate 5 12 4
slatop m 2 gC −1 Specific leaf area (SLA) at top of canopy, projected area basis 0.01 0.07 4
i_vc umol CO2 m −2 s −1 Intercept of the relationship between leaf N per unit area and Vcmax 3 35 4
s_vc umol CO2 m −2 s −1 Slope of the relationship between leaf N per unit area and Vcmax 6 70 4
br_mr umol CO2 m −2 s −1 Base rate for maintenance respiration (MR) 1.26E−06 3.75E−06 7
q10_mr – Temperature sensitivity for MR 1.3 3.3 7
mbbopt – Ball–Berry model equation slope 4 12 8

Note. The ranges are based on (1) observations at the UIUC Energy Farm for 2008 for 𝐴𝐴 𝑇𝑇 𝑝𝑝 and from 2009 to 2018 for 𝐴𝐴 𝑇𝑇 𝑠𝑠 , (2) expert judgment (in the case where there 
is insufficient literature, but within 50% would be inappropriate), (3) Li, Yue, et al. (2018), (4) Cheng et al. (2020), (5) Dietzel et al. (2017), (6) Ma and Dwyer (2001), 
(7) Ricciuto et al. (2018), and (8) Personal communication with Dr. Dan Ricciuto.
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analytically available formulae without any additional sampling (Crestaux 
et  al.,  2009). In this study, we evaluate the main effect sensitivity that 
examines the contribution of one parameter at a time on the total variance 
(Figure 2).

3.3. Site Data

The observational data utilized for model calibration and validation was 
collected at the University of Illinois Urbana-Champaign (UIUC) Energy Farm 

located in the Midwest region of the United States. The mean annual precipitation at the UIUC Energy Farm is 
1,009 mm and the mean annual temperature is 10.9°C with large seasonal variation ranging from monthly minimum 
below −5°C in winter to monthly maximum above 25°C in summer (Moore et al., 2021). The soil at the UIUC 
Energy Farm is deep and poorly drained silty clay loam. Both miscanthus (US-UiB) and switchgrass (US-UiA) plots 
were planted in the spring of 2008, however supplementary miscanthus was planted in 2009 and 2010 due to poor 
establishment in 2008 (Anderson-Teixeira et al., 2013). Nitrogen fertilizer was applied every year to switchgrass and 
from 2014 to 2018 to miscanthus at the rate of 56 kg ha −1 yr −1. Switchgrass was harvested at the end of the growing 
season in November or December, while miscanthus was harvested in the winter months of February or March. 
Eddy covariance flux towers at the center of the plots measure carbon, water, and energy fluxes at 30-min intervals, 
along with common meteorological variables (Moore et al., 2020; Zeri et al., 2011). Meteorological forcing data 
collected at the site including, air temperature, precipitation, downward shortwave radiation, downward longwave 
radiation, humidity, air pressure, and wind speed, was utilized for model simulation. GPP and ER were calculated 
from flux tower net ecosystem exchange values as per Moore et al. (2020). The flux tower derived GPP and ER are 
referred to as observed GPP and ER, respectively, in the remainder of the manuscript. GPP, ER, LE, and H values 
were available from 2009 to 2018 for miscanthus and from 2009 to 2015 for switchgrass. LAI was measured weekly 
during the peak growing season from 2014 to 2018 for miscanthus and from 2014 to 2015 for switchgrass, while 
harvest was measured annually for all growing years. Two years of measured carbon flux, energy flux, LAI, and 
crop yield data were used for validating the model. Carbon and energy flux measurements from the other years were 
used for model calibration (Table 2).

3.4. Bayesian Calibration via Markov Chain Monte Carlo

Bayesian inference was utilized for calibrating model parameters to improve the model performance with respect 
to site data (Tarantola, 2005). Specifically, we employ Markov chain Monte Carlo which samples input parameter 
space with an acceptance/rejection mechanism relying on the match of the model with the observational data 
encapsulated by a likelihood function. However, Markov chain Monte Carlo typically requires infeasibly large 
number of model evaluations before it arrives to a representative set of parameter samples. For this reason, we 
employ the pre-constructed, computationally inexpensive surrogate models in the Markov chain Monte Carlo 
loop. Calibration was performed simultaneously for all four QoIs to identify a single set of parameter value for 
each crop. Calibration was performed by utilizing carbon and energy flux measurements for the calibration years 
only (Table 2). A calibration window was first identified for both perennial bioenergy crops since all four QoIs 
had low or negligible values during the non-growth period. We tested four different calibration windows for GPP 
that excluded the winter months with minimal crop growth (Table S1 in Supporting Information S1). We found 
that a calibration window of 60–270 for both miscanthus and switchgrass resulted in both low root mean squared 
error (RMSE) and percent bias between observations and mean of the posterior simulations. For both miscanthus 
and switchgrass, the same calibration window was used for all four QoIs.

3.5. Model Validation

The optimized parameters obtained from model calibration were utilized for running a single model simulation 
for each crop.  Similar to the calibration runs, the validation simulation ran for 200  years in the accelerated 
spin-up mode, 200 years in the non-accelerated spin-up mode, followed by a transient run from 1850 to 2015. For 
performing model validation, we compared simulated carbon fluxes, energy fluxes, LAI, and annual crop yield 
to the observations for the validation years (Table 2).

Table 2 
Calibration and Validation Years for Miscanthus and Switchgrass

Crop Calibration years Validation years

Miscanthus 2009–2013, 2016, 2017, and 2018 2014 and 2015

Switchgrass 2009–2013 2014 and 2015
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4. Results
4.1. Ensemble Evaluation

The ensemble captures observed seasonality and peak GPP values for both perennial bioenergy crops (Figures 1a 
and 1b). The seasonality of the perennial bioenergy crops, marked by the start and end of the growing season, is 
around 50 days longer than that of traditional maize grown in the midwestern USA (Cheng et al., 2020). The modi-
fied ELM model captures this longer growing season. Leaf onset for both perennial bioenergy cropping systems 
starts at approximately the same time but switchgrass GPP increases and declines earlier than miscanthus. The 
resulting slightly shifted growing seasons for the two perennial bioenergy crops was well captured by the ELM 
ensemble runs. Similar to seasonality, the model closely captures GPP values during the peak growing season, 
including the large observed interannual variability (light gray lines in Figures 1a and 1b).

The model simulates ecosystem respiration well for both crops, during both growth and non-growth periods 
(Figures 1c and 1d). During the growing season, the ensemble captures the full range of ER values. However, 
during the non-growth period the low observed ER values were simulated only by a small fraction of the ensem-
ble members with the majority of ensemble members over predicting the ER during this period. The model simu-
lated large negative spikes in late fall, is a caveat of the crop model eliminating excess maintenance respiration 
pool at harvest time (Oleson et al., 2013). This excess maintenance respiration pool is maintained by the model to 
supply carbon to plants during periods of low photosynthesis but is not required after harvest.

The ensemble captures the seasonality and observed extent of the energy fluxes during the growth phase 
(Figures 1e–1h). Similar to ER, the full range of LE during the growing season was captured by the ensemble. 
However, during the non-growth period the model ensemble underestimates the interannual variability in LE. 
The seasonal dynamics of H was not fully captured by the ensemble with the majority of ensemble members 
overpredicting H during the growing season. The observed trough of H during the growing season maybe be 
caused by increased amount of moisture available for evapotranspiration during the summer months that reduces 
the sensible heat fraction of net energy. The increased moisture availability was likely not captured in the meter-
ological forcing used for model simulation resulting in modeled H being higher than observations. During the 
non-growth period, the ensemble simulation for H underestimates both the observed mean and the large interan-
nual variability.

4.2. ELM Surrogate Performance

The ELM surrogates provided fairly accurate representation of ELM simulations. We utilized 1,600 of the 2,000 
ELM simulations for training the surrogates and 400 simulations for testing the accuracy of the surrogates. The 
testing data points were close to center diagonal line, representing agreement between surrogate and ELM simu-
lations (green dots in Figures S1 and S2 in Supporting Information S1). The daily RMSE and relative RMSE 
between surrogate and ELM simulations for testing data points was relatively low during the growing season for 
all four QoIs for both perennial bioenergy crops, with few outliers during the non-growth period (Figures S3 and 
S4 in Supporting Information S1). These outliers during non-growth season however, did not impact the results of 
calibration as they fell outside of the calibration window and were therefore not utilized for GSA and calibration 
(Section 3.4). The average daily RMSE for miscanthus was 0.65 (gC m −2 day −1) for GPP, 0.53 (gC m −2 day −1) 
for ER, 3.66 (W m −2) for LE, and 3.05 (W m −2) for H while the relative RMSE for the same QoIs was 0.15, 0.14, 
0.93, and 0.64, respectively. For switchgrass the average daily RMSE was 0.71 for GPP, 0.58 for ER, 3.95 for LE, 
and 2.78 for H while the relative RMSE for the same QoIs was 0.19, 0.16, 1.56, and 0.73, respectively.

4.3. Parameter Sensitivity

The most sensitive parameters for GPP, LE, and H vary with phenological state (Figures 1a, 2b and 2e–2h) while 
for ER they remain the same throughout the year, although their relative sensitivity changes with phenological 
stage (Figures 2c and 2d). For both perennial bioenergy crops, the parameter associated with stomatal conduct-
ance (mbbopt) was the most sensitive parameter for all four QoIs while the parameter associated with leaf CN 
allocation (leafcn) was influential for GPP and ER. This parameters was most influential for GPP only during 
the growth phase but for ER, LE, and H it remains sensitive for most of the year. The parameter controlling leaf 
senescence (senescence_temp) was one of the most influential parameters during the leaf senescence period 
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Figure 1. Simulated (light orange lines) and observed (gray lines) daily gross primary productivity (GPP) (gC m −2 day −1) (a and b), ecosystem respiration (ER) (gC 
m −2 day −1) (c and d), latent heat flux (LE) (W m −2) (e and f) and, sensible heat flux (H) (W m −2) (g and h) for miscanthus and switchgrass (left and right column, 
respectively). Light orange lines represent the simulated values for the 2,000 ensemble members. Gray lines represent daily observed values for the calibration years 
(Table 2). The thick orange line represents the simulated mean while the thick black line is the observed daily average across the calibration years. The observational 
data was collected at the University of Illinois Energy Farm.
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for GPP, ER, and LE. During the non-growth period, the temperature sensitivity for maintenance respiration 
(q10_mr) parameter was the most sensitive parameter for ER. For GPP, LE, and H, during the leaf emergence 
phase, the parameter controlling leaf onset (gddmin) exhibits high sensitivity. For LE and H, planting_temp 
also exhibited high sensitivity during leaf emergence phase. The five most influential parameters across the four 

Figure 2. Main-effect Sobol sensitivity indices of the 20 parameters for the daily gross primary productivity (GPP) (a and b), ecosystem respiration (ER) (c and d), 
latent heat flux (LE) (e and f) and, sensible heat flux (H) (g and h) outputs for miscanthus and switchgrass (left and right column, respectively). The legend lists only 
the most influential parameters for the respective quantities of interests.
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QoIs, mbbopt, leafcn, senescence_temp, q10_mr, and gddmin, were used for conducting a combined 
calibration with all QoIs.

4.4. Model Calibration

The optimized parameter values for select parameters were mostly similar across the two bioenergy crops 
(Table  3). These values represent the maximum a posteriori estimates of the optimized parameter range 
obtained after conducting calibration for the five most sensitive parameters (Figure S5 in Supporting Informa-
tion S1). A reliable range for optimal senescence_temp for both crops was not obtained since senes-
cence_temp was only sensitive during the last few months of the year that falls outside the calibration 
window. Additionally, the optimized value of leafcn for miscanthus and gddmin for switchgrass are less 
reliable as the probability density function (pdf) of the optimized parameter are skewed toward either side 
of the input range (Figure S5 in Supporting Information  S1), indicating a degree of overfitting or a need 
to increase the parameter range. The non-optimum values for these parameters may result in possible bias 
between simulated and observed fluxes or slight shifts in the start of the leaf onset compared to the observa-
tions (controlled by gddmin). Such less reliable estimate of few parameters is not unexpected since various 
land process are interlinked, and some parameters may not have been included in our GSA resulting in over-
fitting of other parameters. Despite this limitation, the approach utilized here identifies the most influential 
parameters and the optimum value of several of these parameters. Default parameter values were used for 
parameters that were not optimized as part of the GSA.

The calibrated GPP closely matches the observations for the timing of leaf onset, timing of peak GPP, the sharp 
increase before peak GPP, and the timing of leaf senescence for both perennial bioenergy crops, but slightly 
underestimates the magnitude of peak GPP (Figures 3a and 3b black line and green shading). Overall, the poste-
rior GPP estimates explained more than 90% of the observed daily variance within the calibration window and 
for all year round for both miscanthus and switchgrass (Table 4). The percent bias for miscanthus was less than 
12% and for switchgrass was less than 6% within the calibration window.

The calibrated ER closely matches the observations during the growing period and was slightly higher than the 
observations during the non-growing season for both crops (Figures 3b and 3d). Similar to GPP, the posterior ER 
estimates explain large fraction of the observed daily variance (more than 95%). The higher observed percent bias 
during the calibration window for both perennial bioenergy crops, despite closely matching the observations, can 
most likely be attributed to the daily variations.

The posterior estimates of latent heat flux captures the observed seasonality and peak magnitude for both crops 
during the growing season, however calibrated sensible heat flux captures only the observed seasonality for 
switchgrass (Figures 3e–3h). The calibrated latent heat flux explains more than 85% of the observed daily vari-
ation while the sensible heat flux explains 2%–43% (Table 4). The higher/lower explanatory power of LE/H for 
observed daily variation is likely due to increased amount of moisture available during summer for evapotran-
spiration that results in LE dominating the energy balance. Similar to ER, the large percent bias for LE despite 
closely matching the observations is likely due to difference in values at a daily timescale. Although, the poste-
rior H estimates for switchgrass, capture the seasonality in the observations they fail to capture the observed 
magnitude during the months of May–July. The posterior estimates capture the observed increase in switchgrass 

Table 3 
Optimized Parameter Values for Five Most Sensitive Parameters Based on Maximum a Posteriori (MAP) Estimates

Parameter ELM variable Description Input range Miscanthus Switchgrass

𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺
min

 gddmin Minimum growing degree days 50–320 136 51 a

𝐴𝐴 𝑇𝑇 𝑠𝑠 senescence_temp Average 10-day temperature for leaf senescence 280–290 290 a 290 a

leafcn Leaf CN ratio 15–35 35 a 34
q10_mr Temperature sensitivity for MR 1.3–3.3 2.1 2.2
mbbopt Ball–Berry model equation slope 4–12 8.1 8.3

 aThe probability density function of the optimized parameter range was skewed to either side of the input range.
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Figure 3. Model calibration: observed versus prior and posterior distribution of the modeled gross primary productivity (GPP) (gC m −2 day −1) (a and b), ecosystem 
respiration (ER) (gC m −2 day −1) (c and d), latent heat flux (LE) (W m −2) (e and f) and, sensible heat flux (H) (W m −2) (g and h) for miscanthus and switchgrass (left 
and right column, respectively). The prior distribution (red shade) represents the daily simulated values for the 2,000 ensemble members while the posterior distribution 
(green shade) represents the calibrated values estimated with the optimized parameters. A calibration window from 60 to 270 days was utilized for both miscanthus and 
switchgrass. The black line represents observed average daily across the calibration years (Table 2).
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H between August and September (Figure 3h). However, this increase in late summer H was not observed in 
miscanthus (black line Figure 3g) implying different agricultural management between the two crops during this 
period that was not represented in the model resulting in posterior estimates for miscanthus being higher than 
observations. It is also noteworthy that the observed daily average used for calibration has a higher signal-to-noise 
ratio for both the energy fluxes than for the carbon fluxes, likely contributing to lower calibration accuracy for 
the energy fluxes.

4.5. Model Validation

We found that the calibrated model generally captures the observed seasonality of the carbon and energy fluxes 
and simulated flux magnitude (Figure  4). The seasonality of switchgrass was better simulated than that of 
miscanthus, for which the simulated leaf emergence starts earlier than observations. For both crops, simulated 
flux magnitudes in the earlier and later part of the growing season closely match the observations, although the 
peak fluxes were not as well captured. The model underestimates peak GPP for both crops, peak ER for switch-
grass, and overestimates the peak ER and LE for miscanthus. The simulated sensible heat flux for miscanthus 
fails to capture the observed seasonality and magnitude of observations. These differences maybe due to one or 
more of these factors: all four QoIs were calibrated simultaneously, yielding optimum value across the four QoIs 
but not for individual QoIs; the combined calibration step limited the number of parameters that were selected 
for calibration; and observations for the validation years were different than those used for calibration, that is, the 
model did not perform as well for ’unseen’ years.

We found that simulated LAI captured the observed seasonality, but underestimated the magnitude (Figure 5). 
LAI was estimated in the model as the product of leaf carbon and a parameter specifying leaf area at the top of 
the canopy (slatop). The slatop parameter was considered in our GSA study but was not among the five 
most influential parameters across the four QoIs and thus its default value (0.05) was used. The low simulated 
LAI for switchgrass compared to the observations suggest a higher slatop value than the current model default.

Interestingly, the model underestimates annual harvest for both crops with larger difference between observations 
and simulated values for miscanthus than switchgrass (Figure 6). The disparity between observed and simulated 
yield is likely due to simulated LAI being lower than observed (Figure 5) and due to harvest occurring earlier in 
the model (the later part of October) than at the UIUC Energy Farm (between January and March of the following 
year for miscanthus, and between November and December for switchgrass) (Anderson-Teixeira et al., 2013). The 
larger difference between observed and modeled harvest dates for miscanthus compared to switchgrass translates 
into larger discrepancy in observed and modeled harvest amounts for miscanthus compared to switchgrass. It is 
also noteworthy, that for miscanthus yield peaks a few years after crop establishment and both validation years 
occur after the crop is well established resulting in the observed yield for these years toward the higher end of 

Table 4 
Root Mean Squared Error (RMSE), Percent Bias, Correlation Coefficient, and R 2 Between Observations and Mean of Surrogate Based Posterior Simulations

Miscanthus within calibration window (60–270) Switchgrass within calibration window (60–270)

GPP ER LE H GPP ER LE H

RMSE 1.58 0.63 20.43 17.16 1.91 0.72 21.48 18.27

Percent bias (%) −11.59 7.67 16.91 17.07 −5.55 −0.65 7.83 19.77

Corr. coeff. 0.99 0.98 0.96 0.14 0.97 0.98 0.92 0.41

R 2 0.98 0.97 0.91 0.02 0.94 0.96 0.85 0.17

Miscanthus considering all 365 days Switchgrass considering all 365 days

RMSE 1.41 0.77 17.11 15.81 2.05 0.84 18.28 16.19

Percent bias (%) −13.9 13.08 7.03 9.37 −10.54 6.06 0.03 7.99

Corr. coeff. 0.99 0.98 0.98 0.55 0.97 0.98 0.97 0.66

R 2 0.98 0.96 0.96 0.3 0.94 0.96 0.94 0.43

Note. All listed R 2 are significant with p < 0.01.
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Figure 4. Model validation: observed versus simulated gross primary productivity (GPP) (gC m −2 day −1) (a and b), ecosystem respiration (ER) (gC m −2 day −1) (c 
and d), latent heat flux (LE) (W m −2) (e and f) and, sensible heat flux (H) (W m −2) (g and h) for miscanthus and switchgrass (left and right column, respectively) 
using optimized parameter values (Table 3). The red lines represent daily average model simulation over the last 10 years of transient run and the black line represents 
observed daily average values over the validation years (Table 2).
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the observed range across all years (mean yield across all years—13.2 ton ha −1; mean yield over the validation 
years—15.7 ton ha −1).

The fertilizer application rate of 56 kg ha −1 yr −1, at the UIUC Energy Farm, is lower than the ELM default of 84 
kg ha −1 yr −1. We performed a sensitivity analysis to examine the impact of lower fertilizer application rate and 
found that lower fertilizer rate resulted in minimal changes to the carbon and energy fluxes estimation suggesting 
that the calibrated QoIs aren't sensitive to the fertilizer application rate.

5. Discussion
Only a handful of parameters dominate the sensitivity of carbon and energy fluxes for the two perennial bioenergy 
crops. The ELM crop model utilizes a large number of parameters each with its own uncertainty that results in a 
large spread in the simulated fluxes. The sensitivity analysis performed in this study shows that five out of more 
than 100 parameters used for the ELM crop model, dictate the uncertainty in modeled carbon and energy fluxes. 
This finding can assist in streamlining future model calibration efforts. Similar findings were also made for ELM 
simulated carbon cycle outputs from multiple plant functional types (Ricciuto et al., 2018). We find that  for both 
carbon and energy fluxes parameters controlling the timing of leaf senescence (senescence_temp), onset of 
leaves (gddmin), and stomatal conductance (mbbopt) were among the most sensitive parameters. Additionally, 
for GPP and ER the parameter controlling leaf CN allocation (leafcn) and for ER the parameter controlling 
maintenance respiration (q10_mr) were also highly sensitive.

Figure 5. Model validation: observed versus simulated leaf area index (LAI) for miscanthus (a) and switchgrass (b) using optimized parameter value (Table 3). The 
gray lines represent simulated annual LAI over the last 10 years of transient run and the black line is the model mean across the 10 years. The dots represents observed 
weekly LAI over the validation years (Table 2).

Figure 6. Model validation: observed versus simulated crop harvest for miscanthus (a) and switchgrass (b) using optimized parameter value (Table 3). The box plot 
represents distribution of simulated annual harvest over the last 10 years of transient run and the dots represents observed harvest for the validation years (Table 2).
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Some of the most influential parameters identified in this study had not been previously identified. The parame-
ters associated with phenology (gddmin, senescence_temp), stomatal conductance (mbbopt), and mainte-
nance respiration (q10_mr) had not been identified before as influential for modeling carbon and energy fluxes 
for perennial crops. Another study modeling miscanthus and switchgrass using CLM5, identified slatop, 
fleafi, and parameters associated with photosynthetic capacity (s_vc and i_vc) as sensitive parameters for 
GPP, ER, and LE (Cheng et al., 2020). The s_vc and i_vc parameters were considered in our analysis but were 
not found to be sensitive for carbon or energy fluxes, while the slatop and fleafi were influential parameters 
for select QoIs in this study but were not among the five most sensitive parameters combinedly across the four 
QoIs.

These differences are likely due to one or more of three major differences in these two studies. First, ELM 
and CLM5 both have several differences between them despite branching from the same model (CLM4.5). For 
instance, ELM now incorporates dynamic root modeling (Drewniak, 2019), climate driven planting date estima-
tion, and perennial crop modeling while CLM5 includes the implementation of Fixation and Uptake of Nitrogen 
(FUN) and Leaf Use of Nitrogen for Assimilation (LUNA). The FUN model accounts for the carbon cost of 
nitrogen acquisition (Shi et al., 2016) while the LUNA model accounts for leaf nitrogen utilization in its photo-
synthetic capacity estimation (Ali et al., 2016). Second, both miscanthus and switchgrass were modeled as annual 
crops by Cheng et al. (2020) with four distinct phenological phases that include planting, leaf emergence, grain 
fill, and harvest, while in this study they are modeled as perennial crops that have only three phenological phases 
of crop emergence, leaf onset, and leaf senescence. The requirements for the start of various phenological phases 
also differ between this study and Cheng et al. (2020) and allows to accurately capture the timing of crop emer-
gence, leaf onset, leaf senescence, and the growing season length of the two perennial bioenergy crops that are 
quite distinct from annual crops. Third, Cheng et al. (2020) conducted sensitivity analysis by varying 10 samples 
at equal increments within the input range, one parameter at a time. This approach ignores the effect of parameter 
interactions. The GSA approach utilized in this study accounts for parameter interactions by randomly varying 
all parameters within their input range to generate 2,000 parameter samples for running ELM. Additionally, ELM 
surrogates were developed from the outputs of 2,000 ELM runs that were then employed for surrogate based 
GSA. Due to these differences across the two studies, the optimized parameter values obtained in this study were 
compared to the literature rather than among themselves.

The calibrated value of q10_mr is comparable to observations. Studies examining the impact of temperature 
sensitivity on soil respiration found q10_mr to range between 1.6 and 3.2 with an average of 3.0 for miscanthus 
(Robertson et al., 2017; Yazaki et al., 2004) and to range between 2.3 and 3.8 with an average of 2.7 for switch-
grass (Lee et al., 2007; Skinner & Adler, 2010). Variability across the year was also observed in q10_mr with 
highest values being observed during the growth period and lowest values during winter months (Robertson 
et al., 2017). The q10_mr range estimated in this study (Table 3) is close to observations but stays constant 
throughout the year in ELM. Interestingly, a study calibrating CLM4.5 for coniferous forest found that increasing 
q10_mr from ELM default of 1.5–2.5 better captured the observed seasonality of ER for needleleaf evergreen 
temperate forest (Duarte et al., 2017).

As expected, model simulated QoIs that were used for model calibration (GPP, ER, LE, and H) better captured 
the observed seasonality and magnitude for the validation years than QoIs that were not used for calibration (LAI 
and harvest). Simulated LAI, though not used for calibration, captured the observed seasonality for both crops, 
however, underestimated LAI magnitude. LAI estimation utilizes specific leaf area parameter (slatop) that has 
been observed to vary with the growing season, light availability, and photoperiod (Dohleman et al., 2009; Tian 
et al., 2015; Trócsányi et al., 2009; Van Esbroeck et al., 2003). Currently slatop in ELM does not vary with the 
growing season, light availability, or photoperiod and this lack of variation could be contributing to low estimated 
LAI. In addition, as noted above, slatop parameter was not optimized, and doing so might improve simulated 
LAI. Simulated harvest was lower than the observations likely due to harvest occurring earlier in the model than 
in the observations. Similar to our observations, studies comparing simulated yields against a global data set of 
observed yields (Li, Ciais, et al., 2018) have found modeled yields to be much higher or lower than observations 
at select locations (Li, Yue, et al., 2018; Littleton et al., 2020).

Interestingly, the optimized parameter values for the two bioenergy crops were quite close to each other. Studies 
have shown photosynthetic rates and productivity to differ significantly between miscanthus and switchgrass 
(Dohleman et al., 2009; Kiniry et al., 2012). Despite these differences among the two bioenergy crops, the similar 
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parameters values estimated in this study may be due to ELM likely being highly sensitivity to the most influen-
tial parameters identified in our study. It is also worth noting, that accurately capturing differences across pfts is 
challenging for ESMs in general, and is a subject of active research (Anderegg et al., 2022; Fisher et al., 2018).

The ELM-crop model has limitations that contribute to uncertainty in our predictions of carbon and energy 
fluxes. First, the model currently underpredicts harvest for perennial bioenergy crops, likely due to inaccuracies 
in the simulated harvest date. Additionally, underestimation of yield may also be due to improved agricultural 
management practices at the UIUC Energy farm that are not captured in ELM. This limitation should be further 
explored by future studies examining the impact of perennial bioenergy crop expansion. Second, parameters 
like slatop have been observed to vary with time and light availability, processes that are not captured by the 
time-invariant parameters currently used in the model. Third, parameters associated with maintenance respiration 
(br_mr and q10_mr) are currently held constant for all crop and vegetation types. However, as shown in this 
study and (Duarte et al., 2017) these parameters vary with plant and crop functional types. Fourth, agricultural 
management practices, such as fertilizer application rates, currently do not vary over time. The large increase in 
fertilizer application over the last few decades and the projected future changes should be captured in the model 
to accurately capture historical and future fluxes.

6. Conclusions
This study implements perennial crop modeling in ELM and calibrates and tests the model for miscanthus and 
switchgrass using observational data on carbon and energy fluxes from the Midwest United States. We find that 
only five parameters associated with leaf carbon nitrogen, timing of leaf onset and senescence, leaf stomatal 
conductance, and maintenance respiration, control the uncertainty in modeled carbon and energy fluxes. The 
calibrated model generally captures the observed seasonality of carbon and energy fluxes; some poorly simulated 
outputs (in particular sensible heat flux and harvest amount) could be due either to lack of accurate process 
representation, relevant parameters not being considered, or a large signal-to-noise ratio in the observations. 
Future studies can also include model outputs related to water budget in model calibration and validate the model 
using observations from other site. Our modeling study lays the groundwork for future studies that examine the 
impact of perennial bioenergy crop expansion and provides valuable insights for improving representation of 
other crops in ESMs. Future research can utilize the parameterized perennial bioenergy crop model developed in 
this study to examine the impact of future perennial bioenergy expansion on carbon, water, and energy budgets. 
Finally, future crop modeling studies that perform GSA can utilize only the most sensitive parameters identified 
in this study to reduce the surrogate models' dimensionality, and improve their accuracy.

Data Availability Statement
The E3SM model is described in detail at https://e3sm.org/. The source code for E3SM v2 can be downloaded 
from https://www.osti.gov/doecode/biblio/64702. The source code for ELMv2 that contains perennial bioenergy 
crops is archived and made publicly available at https://doi.org/10.5281/zenodo.5975834. Model output data are 
accessible directly from the DOE's National Energy Research Scientific Computing Center (NERSC) at https://
portal.nersc.gov/cfs/e3sm/esinha/Sinha-etal-2022-JAMES/. All of the code supporting this paper is available at 
https://github.com/evasinha/Sinha-etal-2022-JAMES. The UIUC Energy Farm data used in this study can be 
obtained from the AmeriFlux websites: US-UiA: https://ameriflux.lbl.gov/sites/siteinfo/US-UiA and US-UiB: 
https://ameriflux.lbl.gov/sites/siteinfo/US-UiB.
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