1,044 research outputs found

    Sequential Markov Chain Monte Carlo for multi-target tracking with correlated RSS measurements

    Get PDF
    In this paper, we present a Bayesian approach to accurately track multiple objects based on Received Signal Strength (RSS) measurements. This work shows that taking into account the spatial correlations of the observations caused by the random shadowing effect can induce significant tracking performance improvements, especially in very noisy scenarios. Additionally, the superiority of the proposed Sequential Markov Chain Monte Carlo (SMCMC) method over the more common Sequential Importance Resampling (SIR) technique is empirically demonstrated through numerical simulations in which multiple targets have to be tracked

    Gradient based sequential Markov chain Monte Carlo for multitarget tracking with correlated measurements

    Get PDF
    Measurements in wireless sensor networks (WSNs) are often correlated both in space and in time. This paper focuses on tracking multiple targets in WSNs by taking into consideration these measurement correlations. A sequential Markov Chain Monte Carlo (SMCMC) approach is proposed in which a Metropolis within Gibbs refinement step and a likelihood gradient proposal are introduced. This SMCMC filter is applied to case studies with cellular network received signal strength data in which the shadowing component correlations in space and time are estimated. The efficiency of the SMCMC approach compared to particle filtering, as well as the gradient proposal compared to a basic prior proposal, are demonstrated through numerical simulations. The accuracy improvement with the gradient-based SMCMC is above 90% when using a low number of particles. Thanks to its sequential nature, the proposed approach can be applied to various WSN applications, including traffic mobility monitoring and prediction

    3D Reconstruction and Presentation of Cultural Heritage: AR and VR Experiences at the Museo d’Arte Orientale di Torino

    Get PDF
    For years, virtual reconstruction in the figurative arts, and sculpture, in particular, has been developing and consolidating. The workflow from the acquisition to three-dimensional modelling and to the integration of missing parts, has been optimized through processes entirely implemented in the digital dimension. The most recent developments in augmented reality and virtual reality technologies, together with the possibility of using low-cost and widely available devices, have made it possible to establish new links between the real and the virtual. The experiences presented in this paper comes up within the agreement between the Politecnico di Torino and the Museo d’Arte Orientale (MAO). The workflow set up for this research involves: structure from motion (SfM) survey, 3D modelling, and 3D philological reconstruction, then develops a proposal to implement augmented and virtual reality experiences aimed at the communication and fruition of the exhibits. The case study concerns two Japanese statues, and proposes their visualisation with the respective weapons virtually reconstructed, and through VR, involving the reconstruction of the interior space of a temple recognised as philologically compatible with the location of the statues within a statuary complex

    AR AND VR FOR ENHANCING MUSEUMS’ HERITAGE THROUGH 3D RECONSTRUCTION OF FRAGMENTED STATUE AND ARCHITECTURAL CONTEXT

    Get PDF
    This paper presents the results of multidisciplinary research in which reconstructive digital modelling operates on different areas of heritage and at different scales to realize an analysis, interpretation, and communication experience in the field of museum valorization. It is, in fact, a work that includes both the philological reconstruction of the lost parts of a Buddha statue of Gandhāra, dating back to the second century b.C. and kept at the Museum of Oriental Art (MAO) in Turin, and its contextualization within a coeval architectural complex, recognized as philologically compatible, located in Balo-Kale, in the region of Gandhāra. The reconstructive models are finally used with communicative purposes for augmented reality (AR) and virtual reality (VR) applications inside the museum

    Topological acoustics in coupled nanocavity arrays

    Full text link
    The Su-Schrieffer-Heeger (SSH) model is likely the simplest one-dimensional concept to study non-trivial topological phases and topological excitations. Originally developed to explain the electric conductivity of polyacetylene, it has become a platform for the study of topological effects in electronics, photonics and ultra-cold atomic systems. Here, we propose an experimentally feasible implementation of the SSH model based on coupled one-dimensional acoustic nanoresonators working in the GHz-THz range. In this simulator it is possible to implement different signs in the nearest neighbor interaction terms, showing full tunability of all parameters in the SSH model. Based on this concept we construct topological transition points generating nanophononic edge and interface states and propose an easy scheme to experimentally probe their spatial complex amplitude distribution directly by well-established optical pump-probe techniques.Comment: 10 pages, 4 figure

    Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains

    Get PDF
    We consider the biharmonic operator subject to homogeneous boundary conditions of Neumann type on a planar dumbbell domain which consists of two disjoint domains connected by a thin channel. We analyse the spectral behaviour of the operator, characterizing the limit of the eigenvalues and of the eigenprojections as the thickness of the channel goes to zero. In applications to linear elasticity, the fourth order operator under consideration is related to the deformation of a free elastic plate, a part of which shrinks to a segment. In contrast to what happens with the classical second order case, it turns out that the limiting equation is here distorted by a strange factor depending on a parameter which plays the role of the Poisson coefficient of the represented plate.Comment: To appear in "Integral Equations and Operator Theory

    Seasonal pattern in elderly hospitalized with acute kidney injury: a retrospective nationwide study in Italy

    Get PDF
    Purpose: Acute kidney injury (AKI) frequently complicates hospitalization and is associated with in-hospital mortality (IHM). It has been reported a seasonal trend in different clinical conditions. The aim of this study was to evaluate the possible relationship between seasons of the year and IHM in elderly hospitalized patients with AKI. Methods: We selected all admissions complicated by AKI between 2000 and 2015 recorded in the Italian National Hospital Database. ICD-9-CM code 584.xx identified subjects with age ≄ 65 years and age, sex, comorbidity burden, need of dialysis treatment and IHM were compared in hospitalizations recorded during the four seasons. Moreover, we plotted the AKI observed/expected ratio and percentage of mortality during the study period. Results: We evaluated 759,720 AKI hospitalizations (mean age 80.5 ± 7.8 years, 52.2% males). Patients hospitalized with AKI during winter months had higher age, prevalence of dialysis-dependent AKI, and number of deceased patients. In whole population IHM was higher in winter and lower in summer, while the AKI observed/expected ratio demonstrated two peaks, one in summer and one in winter. Logistic regression analysis demonstrated that parameters such as age, autumn, winter, comorbidity burden were positively associated with IHM. Conclusion: We conclude that a seasonality exists in AKI, however, relationship between seasons and AKI could vary depending on the aspects considered. Both autumn and winter months are independent risk factors for IHM in patients with AKI regardless of age, sex and comorbidity burden. On the contrary, summer time reduces the risk of death during hospitalizations with AKI

    Analyticity and criticality results for the eigenvalues of the biharmonic operator

    Full text link
    We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.Comment: To appear on the proceedings of the conference "Geometric Properties for Parabolic and Elliptic PDE's - 4th Italian-Japanese Workshop" held in Palinuro (Italy), May 25-29, 201
    • 

    corecore