295 research outputs found
I Want The Twilight And You
https://digitalcommons.library.umaine.edu/mmb-vp/4787/thumbnail.jp
Towards quantum gravity measurement by cold atoms
Peer reviewedPreprin
Veterinary pharmacy within the United Kingdom: review of current practice and education.
Background: Pharmacists have acknowledged roles as medicines experts facilitating human healthcare. Such expertise is also applicable in pharmaceutical treatments for non-human animals. Aims: The aims were to review the perceptions and extent to which pharmacists in the United Kingdom (UK) participate with veterinary pharmacy, and to consider their educational background in this area. Methods: Using an iterative approach, extensive searches of relevant databases and key pharmacy publications were conducted with all relevant material published between 2002 – 2012 gathered. Results: Limited information on the subject has been published, highlighting the lack of widespread consideration. It was established that UK registered pharmacists have minimal participation in veterinary medicine. The major reason for limited participation is an insufficient knowledge of the subject. Conclusion: Delivery of the revised GPhC indicative syllabus in Schools of Pharmacy should provide pharmacy graduates of the future with enhanced knowledge of veterinary pharmacy thereby facilitating greater participation with this area
Flash-Heating of Circumstellar Clouds by Gamma Ray Bursts
The blast-wave model for gamma-ray bursts (GRBs) has been called into
question by observations of spectra from GRBs that are harder than can be
produced through optically thin synchrotron emission. If GRBs originate from
the collapse of massive stars, then circumstellar clouds near burst sources
will be illuminated by intense gamma radiation, and the electrons in these
clouds will be rapidly scattered to energies as large as several hundred keV.
Low-energy photons that subsequently pass through the hot plasma will be
scattered to higher energies, hardening the intrisic spectrum. This effect
resolves the "line-of-death" objection to the synchrotron shock model.
Illuminated clouds near GRBs will form relativistic plasmas containing large
numbers of electron-positron pairs that can be detected within ~ 1-2 days of
the explosion before expanding and dissipating. Localized regions of pair
annihilation radiation in the Galaxy would reveal past GRB explosions.Comment: 9 pages, 1 figure, submitted to ApJ Letter
Chronicles of Oklahoma
Necrology section from Volume 30, Number 2, Summer 1952. It includes documents honoring the lives of Paul Nesbitt, Mrs. Jasper Sipes, Marion Riley Tittle, and Clinton Riley Strong
TADPOL: A 1.3 mm Survey of Dust Polarization in Star-forming Cores and Regions
We present {\lambda}1.3 mm CARMA observations of dust polarization toward 30
star-forming cores and 8 star-forming regions from the TADPOL survey. We show
maps of all sources, and compare the ~2.5" resolution TADPOL maps with ~20"
resolution polarization maps from single-dish submillimeter telescopes. Here we
do not attempt to interpret the detailed B-field morphology of each object.
Rather, we use average B-field orientations to derive conclusions in a
statistical sense from the ensemble of sources, bearing in mind that these
average orientations can be quite uncertain. We discuss three main findings:
(1) A subset of the sources have consistent magnetic field (B-field)
orientations between large (~20") and small (~2.5") scales. Those same sources
also tend to have higher fractional polarizations than the sources with
inconsistent large-to-small-scale fields. We interpret this to mean that in at
least some cases B-fields play a role in regulating the infall of material all
the way down to the ~1000 AU scales of protostellar envelopes. (2) Outflows
appear to be randomly aligned with B-fields; although, in sources with low
polarization fractions there is a hint that outflows are preferentially
perpendicular to small-scale B-fields, which suggests that in these sources the
fields have been wrapped up by envelope rotation. (3) Finally, even at ~2.5"
resolution we see the so-called "polarization hole" effect, where the
fractional polarization drops significantly near the total intensity peak. All
data are publicly available in the electronic edition of this article.Comment: 53 pages, 37 figures -- main body (13 pp., 3 figures), source maps
(32 pp., 34 figures), source descriptions (8 pp.). Accepted by the
Astrophysical Journal Supplemen
Neutrino, Neutron, and Cosmic Ray Production in the External Shock Model of Gamma Ray Bursts
The hypothesis that ultra-high energy (>~ 10^19 eV) cosmic rays (UHECRs) are
accelerated by gamma-ray burst (GRB) blast waves is assumed to be correct.
Implications of this assumption are then derived for the external shock model
of gamma-ray bursts. The evolving synchrotron radiation spectrum in GRB blast
waves provides target photons for the photomeson production of neutrinos and
neutrons. Decay characteristics and radiative efficiencies of the neutral
particles that escape from the blast wave are calculated. The diffuse
high-energy GRB neutrino background and the distribution of high-energy GRB
neutrino events are calculated for specific parameter sets, and a scaling
relation for the photomeson production efficiency in surroundings with
different densities is derived. GRBs provide an intense flux of high-energy
neutrons, with neutron-production efficiencies exceeding ~ 1% of the total
energy release. The radiative characteristics of the neutron beta-decay
electrons from the GRB "neutron bomb" are solved in a special case. Galaxies
with GRB activity should be surrounded by radiation halos of ~ 100 kpc extent
from the outflowing neutrons, consisting of a nonthermal optical/X-ray
synchrotron component and a high-energy gamma-ray component from
Compton-scattered microwave background radiation. The luminosity of sources of
GRBs and relativistic outflows in L* galaxies such as the Milky Way is at the
level of ~10^40+-1 ergs/s. This is sufficient to account for UHECR generation
by GRBs. We briefly speculate on the possibility that hadronic cosmic rays
originate from the subset of supernovae that collapse to form relativistic
outflows and GRBs. (abridged)Comment: 53 pages, 8 figures, ApJ, in press, 574, July 20, 2002. Substantial
revision, previous Appendix expanded to ApJ, 556, 479; cosmic ray origin
speculations to Heidelberg (astro-ph/001054) and Hamburg ICRC
(astro-ph/0202254) proceeding
Multi-Step Usage of in Vivo Models During Rational Drug Design and Discovery
In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET) properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design
Increased Soil Frost Versus Summer Drought as Drivers of Plant Biomass Responses To Reduced Precipitation: Results from A Globally-Coordinated Field Experiment
Reduced precipitation treatments often are used in field experiments to explore the effects of drought on plant productivity and species composition. However, in seasonally snow-covered regions reduced precipitation also reduces snow cover, which can increase soil frost depth, decrease minimum soil temperatures and increase soil freeze-thaw cycles. Therefore, in addition to the effects of reduced precipitation on plants via drought, freezing damage to overwintering plant tissues at or below the soil surface could further affect plant productivity and relative species abundances during the growing season. We examined the effects of both reduced rainfall (via rain-out shelters) and reduced snow cover (via snow removal) at 13 sites globally (primarily grasslands) within the framework of the International Drought Experiment, a coordinated distributed experiment. Plant cover was estimated at the species level and aboveground biomass was quantified at the functional group level. Among sites, we observed a negative correlation between the snow removal effect on minimum soil temperature and plant biomass production the next growing season. Three sites exhibited significant rain-out shelter effects on plant productivity, but there was no correlation among sites between the rain-out shelter effect on minimum soil moisture and plant biomass. There was no interaction between snow removal and rain-out shelters for plant biomass, although these two factors only exhibited significant effects simultaneously for a single site. Overall, our results reveal that reduced snowfall, when it decreases minimum soil temperatures, can be an important component of the total effect of reduced precipitation on plant productivity
- …