518 research outputs found

    Removing beam asymmetry bias in precision CMB temperature and polarisation experiments

    Full text link
    Asymmetric beams can create significant bias in estimates of the power spectra from CMB experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum any systematic error that couples the two must be carefully controlled and/or removed. Here, we derive unbiased estimators for the CMB temperature and polarisation power spectra taking into account general beams and general scan strategies. A simple consequence of asymmetric beams is that, even with an ideal scan strategy where every sky pixel is seen at every orientation, there will be residual coupling from temperature power to B-mode power if the orientation of the beam asymmetry is not aligned with the orientation of the co-polarisation. We test our correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. The simulated experiments use realistic scan strategies, noise levels and highly asymmetric beams. We also develop a map-making algorithm that is capable of removing beam asymmetry bias at the map level. We demonstrate its implementation using simulations and show that it is capable of accurately correcting both temperature and polarisation maps for all of the effects of beam asymmetry including the effects of temperature to polarisation leakage.Comment: 18 pages, 9 figure

    Removing beam asymmetry bias in precision CMB temperature and polarisation experiments

    Get PDF
    Asymmetric beams can create significant bias in estimates of the power spectra from CMB experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum any systematic error that couples the two must be carefully controlled and/or removed. Here, we derive unbiased estimators for the CMB temperature and polarisation power spectra taking into account general beams and general scan strategies. A simple consequence of asymmetric beams is that, even with an ideal scan strategy where every sky pixel is seen at every orientation, there will be residual coupling from temperature power to B-mode power if the orientation of the beam asymmetry is not aligned with the orientation of the co-polarisation. We test our correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. The simulated experiments use realistic scan strategies, noise levels and highly asymmetric beams. We also develop a map-making algorithm that is capable of removing beam asymmetry bias at the map level. We demonstrate its implementation using simulations and show that it is capable of accurately correcting both temperature and polarisation maps for all of the effects of beam asymmetry including the effects of temperature to polarisation leakage.Comment: 18 pages, 9 figure

    Rotation in galaxy clusters from MUSIC simulations with the kinetic Sunyaev-Zel'dovich effect

    Get PDF
    We propose in this work its application for the detection of possible coherent rotational motions in the hot intra-cluster medium. We select a sample of massive, relaxed and rotating galaxy clusters from Marenostrum-mUltidark SImulations of galaxy Clusters (MUSIC), and we produce mock maps of the temperature distortion produced by the kinetic Sunyaev-Zel'dovich effect by exploring six different lines of sight, in the best observational condition. These maps are compared with the expected signal computed from a suitable theoretical model in two cases: (i) focusing only on the contribution from the rotation, and (ii) accounting also for the cluster bulk motion. We find that the parameters of the model assumed for the radial profile of the rotational velocity, averaged over the considered lines of sight, are in agreement within two standard deviations at most with independent estimates from the simulation data, without being significantly affected by the presence of the cluster bulk term. The amplitude of the rotational signal is, on average, of the order of 23 per cent of the total signal accounting also for the cluster bulk motion, and its values are consistent with the literature. The projected bulk velocity of the cluster is also recovered at the different lines of sight, with values in agreement with the simulation dataASB acknowledges funding from Sapienza UniversitĂ  di Roma - Progetti per Avvio alla Ricerca Anno 2017, prot. AR11715C82402BC

    Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Full text link
    The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and to search for hints of new physics. We have determined T_CMB(z), with a precision up to 3%, for a subsample (104 clusters) of the Planck SZ cluster catalog, at redshift in the range 0.01-- 0.94, using measurements of the spectrum of the Sunyaev Zel'dovich effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T_CMB(z) at cluster redshift relies on the use of SZ intensity change, Delta I_SZ(nu), at different frequencies, and on a Monte-Carlo Markov Chain approach. By applying this method to the sample of 104 clusters, we limit possible deviations of the form T_CMB(z)=T_0(1+z)^(1-beta) to be beta= 0.022 +/- 0.018, at 1 sigma uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results we get beta=0.016+/-0.012.Comment: submitted to JCAP, 21 pages, 8 figure

    Lateral patellar luxation in nine small breed dogs

    Get PDF
    The objective of this paper was to describe the clinical features, the management and the outcome of nine small breed dogs affected with lateral patella luxation referred during the period between January 2010 and December 2014. Patellar luxations were classified according to: breed, age, sex, weight, and grade of patellar luxation, as well as if unilateral or bilateral, and concurrent cranial cruciate ligament lesion. In affected dogs, surgical correction consisted in the combination of tibial tuberosity transposition and soft tissue procedure. Adjunctive condroplasty or trochleoplasty was performed as needing. The outcome was found positive after surgical management with low complication rate and complications have been easily managed with high success rate

    Multi-mode TES bolometer optimization for the LSPE-SWIPE instrument

    Full text link
    In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power and operating temperature of the cryostat during the flight.Comment: in Journal of Low Temperature Physics, 05 January 201

    Selective laser melting process of Al–based pyramidal horns for the w-band: fabrication and testing

    Get PDF
    In the context of exploring the possibility of using Al-powder Selective Laser Meltingto fabricate horn antennas for astronomical applications at millimeter wavelengths,we describe the design, the fabrication, the mechanical characterization, and theelectromagnetic performance of additive manufactured horn antennas for the W-band. Our aim, in particular, is to evaluate the performance impact of two basickinds of surface post-processing (manual grinding and sand-blasting) to deal withthe well-known issue of high surface roughness in 3D printed devices. We performedcomparative tests of co-polar and cross-polar angular response across the whole W-band, assuming a commercially available rectangular horn antenna as a reference.Based on gain and directivity measurements of the manufactured samples, we finddecibel-level detectable deviations from the behavior of the reference horn antenna,and marginal evidence of performance degradation at the top edge of the W-band.We conclude that both kinds of post-processing allow achieving good performancefor the W-band, but the higher reliability and uniformity of the sand-blasting post-process encourage exploring similar techniques for further development of aluminumdevices at these frequencies

    Congenital deformity of the distal extremities in three dogs

    Get PDF
    Congenital limb deformities are very rare conditions and the knowledge about etiology, pathogenesis, clinical presentation and treatment is still poor. Moreover, many defects are still not reported in veterinary literature. This report documents clinical and radiographic findings in three dogs with congenital deformity involving the distal extremities. Case 1 was affected with bilateral aphalangia of the pedes, case 2 presented a combination of brachydactyly and syndactyly, whereas in case 3 a unilateral ectrodactyly was observed. To the authors’ knowledge, brachydactyly, as well as aphalangia, are very uncommon anomalies and have been rarely documented. Moreover, association between syndactyly and brachydactyly has still not been reported

    Biased total mass of cool core galaxy clusters by Sunyaev-Zel'dovich effect measurements

    Full text link
    The Sunyaev Zel'dovich (SZ) effect from galaxy clusters is one of the most powerful cosmological tools for investigating the large-scale Universe. The big advantage of the SZ effect is its redshift independence, which is not the case for visible and X-ray observations. It allows us to directly estimate the cluster's total mass from the integrated comptonization parameter Y, even for distant clusters. However, not having a full knowing intra-cluster medium (ICM) physics can affect the results. By taking self-similar temperature and density profiles of the ICM into account, we studied how different ICM morphologies can affect the cluster total mass estimation. With the help of the high percentage of cool core (CC) clusters, as observed so far, the present analysis focuses on studying this class of objects. A sample of eight nearby (0.1 < z < 0.5) and high-mass (M > 10^(14) M_sun) clusters observed by Chandra was considered. We simulated SZ observations of these clusters through X-ray derived information and analyzed the mock SZ data again with the simplistic assumption of an isothermal beta-model profile for the ICM. The bias on the recovered cluster total mass using different sets of assumptions is estimated to be 50% higher in the case of hydrostatic equilibrium. Possible contributions to the total bias due to the line-of-sight integration and the considered ICM template are taken into account. The large biases on total mass recovery firmly support, if still necessary, cluster modeling based on more sophisticated universal profiles as derived by X-ray observations of local objects and hydrodynamical simulations.Comment: 11 pages, 4 figures; minor revisions. Accepted for publication in A&
    • …
    corecore