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Abstract. The Sunyaev–Zel’dovich effect in galaxy clusters is a unique probe for studying
astrophysics and cosmology. We propose in this work its application for the detection of
possible coherent rotational motions in the hot intra-cluster medium. We select a sample
of massive, relaxed and rotating galaxy clusters from Marenostrum-mUltidark SImulations of
galaxy Clusters (MUSIC), and we produce mock maps of the temperature distortion produced
by the kinetic Sunyaev–Zel’dovich effect by exploring six different lines of sight, in the best
observational condition. These maps are compared with the expected signal computed from a
suitable theoretical model in two cases: (i) focusing only on the contribution from the rotation,
and (ii) accounting also for the cluster bulk motion. We find that the parameters of the model
assumed for the radial profile of the rotational velocity, averaged over the considered lines of
sight, are in agreement within two standard deviations at most with independent estimates
from the simulation data, without being significantly affected by the presence of the cluster
bulk term. The amplitude of the rotational signal is, on average, of the order of 23 per cent of
the total signal accounting also for the cluster bulk motion, and its values are consistent with
the literature. The projected bulk velocity of the cluster is also recovered at the different lines
of sight, with values in agreement with the simulation data.

1. Introduction
The study of non-random motions in the diffuse gas in galaxy clusters (the intra-cluster medium,
or ICM) can play an important role for precision cosmology. Indeed, cluster masses are a valuable
observable for constraining some cosmological parameters, and accurate mass measurements
should take into account the contribution from possible ordered motions, which would be given by
an effective non-thermal pressure gradient [1]. Recent results from hydrodynamical simulations
have shown, indeed, that mass estimates accounting only for the support from thermal pressure
are generally biased towards values 10-20 per cent lower than the true ones (see e.g. [2] and
references therein). With the aim of quantifying the non-thermal correction to the hydrostatic
mass, several approaches have been proposed to detect, in particular, possible ordered rotational
motions in the ICM, through observations of the ICM itself or of the galaxy members at X-ray [3],
millimetre [4–6], and optical wavelengths [7–9].
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In this work, we focus on the detection of a possible rotation of the ICM based on
measurements in the microwave band of the kinetic component of the Sunyaev–Zel’dovich (SZ)
effect [10, 11]. The SZ effect arises from the Comptonization of the photons of the cosmic
microwave background (CMB), as they propagate through galaxy clusters and interact with the
free electrons in the ICM. The scattering causes the redistribution of the energy of the photons,
which can be measured as an intensity (or temperature) distortion of the CMB blackbody
spectrum. Two components can be distinguished in the SZ effect: one is due to the thermal
motion of the electrons (the thermal SZ effect, tSZ); the other one is produced by the motion
of the cluster as a whole with respect to the CMB rest frame (the kinetic SZ effect, kSZ). Since
it is proportional to the ICM velocity, the kSZ can be a useful probe of cluster dynamics. In
particular, a purely rotational motion of the ICM would be detectable from the kSZ temperature
distortion, which is expected to feature a dipole pattern, due to the projected approaching and
receding velocities of the rotating gas relatively to the observer, as investigated in [4] and [5] for
the first time.

Synthetic galaxy clusters from large cosmological hydrodynamical simulations represent
ideal targets for preliminary studies on the feasibility of the detection of a rotation with the
aforementioned possible observational strategies. The MUSIC1 catalogue [12] is one of the
largest data set of simulated galaxy clusters to date. We select six candidate rotating clusters
from MUSIC according to the results we reported in a companion paper [13], and we produce
numerical maps of the kSZ temperature signal. In order to constrain their rotation, we fit them
to the expected theoretical kSZ maps for a rotating ICM. In particular, we assume the model
by [4] as a starting basis, and we update it by accounting for a different law describing the
rotational velocity we proposed in [13], assuming both a rotation-only case, and the full case
accounting also for the cluster bulk motion.

The paper is organized as follows. Sec. 2 briefly reports the features of our cluster data set.
In Sec. 3 we describe the theoretical and mock kSZ temperature maps. In Sec. 4 we report our
results, and eventually we summarize our conclusions in Sec. 5.

2. Data set
We select our target clusters from the MUSIC-2 catalogue which is based on high-resolution
re-simulations of clusters from the MultiDark parent simulation [14], from which we also inherit
the assumed cosmological model (see [12] for details). Simulations are run with the Gadget-3
Tree-PM+SPH (i.e. using particle-mesh and smoothed particle hydrodynamics) code, and follow
the evolution of gas and dark matter particles, which have masses mgas = 1.9× 108h−1M� and
mDM = 9.0× 108h−1M�, respectively (where M� is the mass of the sun and h = 0.7). For
our purposes of studying rotation, we focus in particular on a sample of massive (virial masses
Mvir > 5× 1014h−1M�), dynamically relaxed objects at redshift z = 0, with spin parameter of
the gas λgas > 0.07 (see the companion work by [13] for further details). The main properties
of our cluster sample selected according to these criteria are summarized in Tab. 1. We limit
our present analysis to objects extracted from the adiabatic run, i.e. without accounting for
radiative baryon physics processes, since they do not have significant impact on the rotational
properties of the gas [13].
1 http://music.ft.uam.es
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Table 1. Identifier, virial mass, virial radius and spin parameter of the gas of the six galaxy clusters
analysed in this work.

cluster ID Mvir (×1015 M�) Rvir (kpc) λgas

46 1.17 2756 0.0785
93 1.90 3241 0.0769
98 1.61 3071 0.0735
103 1.02 2633 0.0746
205 1.24 2813 0.0763
256 1.31 2867 0.0714

3. Maps of the kSZ effect
3.1. Theoretical model maps
The map of the kSZ temperature distortion produced by the rotation of the ICM described by
a generic angular velocity law ω(r), can be written as [4]:

∆TkSZ,r(R,φ)
TCMB

= −σT

c
R cosφ sin i

Rvir∫
R

ne(r) ω(r) 2r dr√
r2 −R2

, (1)

which corresponds to a dipole. Here (R,φ) are the polar coordinates on the map, TCMB =
(2.725 ± 0.001) K is the CMB monopole temperature [15], σT is Thomson cross section, c is
the speed of light, and i is the angle between the line of sight and rotation axis of the ICM.
The best observational configuration i.e. the one at which the rotational signal is maximum
(corresponding to i = 90◦), is represented schematically in Fig. 1. It can be seen from Eq. (1)
that the two relevant physical quantities in the signal are the radial profiles of the angular
velocity, ω(r), and of the electron number density, ne(r). To disentangle their contribution
to the signal, the electron number density has to be estimated from independent data (e.g.
from X-ray photometry). In our case we use the numerical profiles of ne(r) computed from the
simulation data for each cluster, and we fold the corresponding best-fit analytical profiles into
Eq. (1). To derive these profiles we fit our data to a simplified six-parameter Vikhlinin model [16]

Figure 1. Schematic view illustrating the expected kSZ map from a rotating cluster, assuming the
best observational configuration (i.e. with the line of sight orthogonal to the axis of rotation). The gas
distribution in the cluster is assumed to be spherically symmetric, with the rotation axis aligned with
the angular momentum vector of the gas (Lgas). The velocity vectors, va and vr, indicate respectively
the approaching and receding velocity components along the line of sight for two generic gas particles,
located at the same radial distance from the centre of mass of the cluster.
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through a Markov chain Monte Carlo procedure. The angular velocity profile instead, is derived
from the so-called vp2b model for the tangential velocity proposed in [13], as follows:

ω(r) = vp2b(r)
r

= vt0/r0
1 + (r/r0)2 , (2)

therefore ω(r) depends on the two free parameters, r0 and vt0, which we want to recover from
the fit to the mock kSZ maps.

When the cluster bulk motion is taken into account, and also a rotation is present, the total
kSZ signal becomes:

∆TkSZ(R,φ)
TCMB

= ∆TkSZ,r(R,φ)
TCMB

− σT

c
vbulk

Rvir∫
R

ne(r) 2r dr√
r2 −R2

, (3)

where ∆TkSZ,r(R,φ)/TCMB is given in Eq. (1), and vbulk is the projection of the cluster bulk
velocity on the line of sight This additional term produces an asymmetry in the dipole signal
given by the rotation, depending on the dominating approaching or receding contribution from
vbulk.

3.2. Synthetic maps
We use the pymsz2 code to produce the mock maps of our clusters. To compute the maps we
simply discretize the signal given by Eq. (3), by summing over the velocity of the gas particles
along a given line of sight times the electron density, properly accounting for the projection of
the smoothing kernel used in the simulation. To distinguish the rotation-only case, we subtract
the average velocity of the gas particles from the single particle velocity. The maps extend over
2.5Rvir on each side, with pixel sizes of the order of 10 kpc. The angular size subtended by
each pixel is ∼ 10 arcsec, which we degrade to a common resolution of 20 arcsec by means of
a Gaussian smoothing, in order to emulate observations with a currently operating instrument
(e.g. NIKA2 at ∼ 200 GHz).

To validate the rotational origin of the dipole signal in our mock kSZ maps, we explore six
lines of sight orthogonal to the rotation axis (i.e. fulfilling the condition i = 0), at constant steps
of 30◦; we label each one of them with the value of the angular separation, θlos, with respect to
the reference line of sight (at θlos = 0◦). The dipole produced by rotation is expected to remain
unchanged across these different projections, as well as the parameters describing it.

4. Results and discussion
With the aim of recovering the free parameters of the vp2b profile of the tangential velocity
introduced in Eq. (2), we calculate a pixel-to-pixel fit to the mock kSZ maps using the two
models given by equations (1) (for the rotation-only case) and (3) (for the general case). Fig. 2
illustrates the kSZ maps in the case of cluster 93 (the most massive in the sample), without
(Fig. 2a) and with (Fig. 2b) such bulk contribution. Odd columns show the data maps, while
even columns show the corresponding best-fit maps. It can be seen that the overall features of
the signal are well recovered by our procedure at all the projections. It is also evident how the
dipole becomes asymmetric across different lines of sight in the complete case, because of the
dominating contribution from the projection of the approaching bulk velocity with respect to
the observer. The small-scale outliers in the maps – which are characterized by a signal up to a
factor of ∼ 3 higher than the best-fit signal – are produced by small high-velocity substructures
encountered along the line of sight. Their presence, however, does not affect significantly the
2 https://github.com/weiguangcui/pymsz
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Figure 2. Mock maps of the kSZ temperature distortion for cluster 93, and corresponding best-fit maps,
without and with accounting for the cluster bulk velocity (left and right panels, respectively). Contours
are plotted from -5σ to 5σ, with dashed (solid) lines for negative (positive) values.

detection of the dipole in terms of amplitude or spatial features. The values of the two free
parameters of the rotational model we recover from the fit to the kSZ maps of our cluster
sample – r0 and vt0 – are averaged over the explored line of sight. From the comparison of the
rotation-only and the rotation+bulk cases, we find agreement within one standard deviation
for both parameters. When we compare them to the values from an independent fit to the
velocity data from the simulation instead, we get an agreement within at most two-standard
deviations for vt0, which is generally overestimated. This could be due to a higher sensitivity of
this parameter to the presence of high-velocity outliers located in the outermost regions, or to
a non-optimal reconstruction of the signal due to irregularities in the gas density. These results
indicate that the vp2b model is, in general, a fairly good description of the tangential velocity
profile, and that it is possible to separate the rotational contribution to the signal from the one
coming from the bulk motion. This aspect is further confirmed by the lack of significant mutual
correlation between the three free parameters, vbulk, r0 and vt0.

We quantify the rotational signal through the amplitude of the dipole, Adip, measured in the
best-fit maps for the rotation-only case. The average values across the different lines of sight
are listed in the middle column of Tab. 2: they are of the order of few tens of µK, in agreement
with estimates from the literature for relaxed clusters [5]. The right column of Tab. 2 shows
the amplitude Abulk of the total kSZ signal given by rotation and bulk, as measured in the

Table 2. Amplitude of the kSZ temperature signal measured from the best-fit maps in the rotation-only
case and in the rotation+bulk case (see text).

cluster ID Adip (µK) Amax
bulk (µK)

46 10.8± 2.5 -57.5
93 21.1± 5.2 82.1
98 24.4± 9.2 -77.9
103 16.5± 2.9 -99.4
205 20.9± 5.1 68.8
256 24.4± 4.3 -143.1
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corresponding best-fit map at the line of sight in which vbulk takes its maximum absolute value.
From a comparison between these amplitudes it can be seen that, on average, Adip/A

max
bulk ∼ 0.23,

therefore a possible measurement of the rotational signal requires high sensitivity, coupled to a
sufficiently high angular resolution to detect the dipole at sub-arcminute scales.

To validate our reconstruction of the projected bulk velocity of the clusters, vbulk, we compare
the values derived from the fit at different projections with the true values from the simulation
data. We find relative differences of the order of few tens per cent between the two at most
projections; this indicates that in principle our procedure can be used to constrain the component
along the line of sight of the cluster velocity field.

5. Conclusions
We tested the application of the kSZ effect for the detection and the characterization of possible
rotational motions in the ICM, using a selected sample of massive and relaxed objects extracted
from MUSIC simulations. Assuming the best observational configuration, we computed the
synthetic and the theoretical maps of the kSZ temperature distortion assuming only a rotational
motion, and also adding the contribution from the cluster bulk motion. In both cases we find
a good agreement with the expected model for the rotational velocity, which we also test using
the velocity data extracted from the simulations. The rotational signal is found to contribute
about 23 per cent of the total maximum kSZ signal, on average, from the study of different lines
of sight. Also, the projected cluster bulk velocity and the amplitude of the rotational signal are
found to be consistent with the simulation values and with literature expectations, respectively.
We are planning to extend this analysis by probing the rotation of ICM in our cluster sample also
by means of complementary probes at different wavelengths, and by accounting for instrumental
effects by referring to a specific candidate experiment for microwave astronomy.
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