14,455 research outputs found

    Analysis and control of bifurcation and chaos in averaged queue length in TCP/RED model

    Get PDF
    This paper studies the bifurcation and chaos phenomena in averaged queue length in a developed Transmission Control Protocol (TCP) model with Random Early Detection (RED) mechanism. Bifurcation and chaos phenomena are nonlinear behaviour in network systems that lead to degradation of the network performance. The TCP/RED model used is a model validated previously. In our study, only the average queue size k q − is considered, and the results are based on analytical model rather than actual measurements. The instabilities in the model are studied numerically using the conventional nonlinear bifurcation analysis. Extending from this bifurcation analysis, a modified RED algorithm is derived to prevent the observed bifurcation and chaos regardless of the selected parameters. Our modification is for the simple scenario of a single RED router carrying only TCP traffic. The algorithm neither compromises the throughput nor the average queuing delay of the system

    Unification of bulk and interface electroresistive switching in oxide systems

    Get PDF
    We demonstrate that the physical mechanism behind electroresistive switching in oxide Schottky systems is electroformation, as in insulating oxides. Negative resistance shown by the hysteretic current-voltage curves proves that impact ionization is at the origin of the switching. Analyses of the capacitance-voltage and conductance-voltage curves through a simple model show that an atomic rearrangement is involved in the process. Switching in these systems is a bulk effect, not strictly confined at the interface but at the charge space region.Comment: 4 pages, 3 figures, accepted in PR

    Neural processes of proactive and reactive controls modulated by motor-skill experiences

    Get PDF
    This study investigated the experience of open and closed motor skills on modulating proactive and reactive control processes in task switching. Fifty-four participants who were open-skilled

    Correlation between ocular elasticity and intraocular pressure on optic nerve damages

    Get PDF
    Optic neuropathy in glaucoma causes visual field loss and blindness [1]. The optic nerve damage in the lamina cribrosa (LC) of the sclera, the primary site of glaucoma, is correlated with the intraocular pressure (IOP) [2]. Literature shows that the optic nerves are sheared at high IOP and the scleral biomechanical properties play an important role in the development and progression of glaucomatous damage to the LC and ganglion cell axons with the optic nerve head (ONH). The aim of this study is to determine and characterize the correlation between the corneal, scleral and ONH elasticity, and intraocular pressure on the optic nerve damages

    Correlation between ocular elasticity and intraocular pressure on optic nerve damages

    Get PDF
    Optic neuropathy in glaucoma causes visual field loss and blindness [1]. The optic nerve damage in the lamina cribrosa (LC) of the sclera, the primary site of glaucoma, is correlated with the intraocular pressure (IOP) [2]. Literature shows that the optic nerves are sheared at high IOP and the scleral biomechanical properties play an important role in the development and progression of glaucomatous damage to the LC and ganglion cell axons with the optic nerve head (ONH). The aim of this study is to determine and characterize the correlation between the corneal, scleral and ONH elasticity, and intraocular pressure on the optic nerve damages

    Implementing Unitarity in Perturbation Theory

    Get PDF
    Unitarity cannot be perserved order by order in ordinary perturbation theory because the constraint UU^\dagger=\1 is nonlinear. However, the corresponding constraint for K=lnUK=\ln U, being K=KK=-K^\dagger, is linear so it can be maintained in every order in a perturbative expansion of KK. The perturbative expansion of KK may be considered as a non-abelian generalization of the linked-cluster expansion in probability theory and in statistical mechanics, and possesses similar advantages resulting from separating the short-range correlations from long-range effects. This point is illustrated in two QCD examples, in which delicate cancellations encountered in summing Feynman diagrams of are avoided when they are calculated via the perturbative expansion of KK. Applications to other problems are briefly discussed.Comment: to appear in Phys. Rev.

    A pseudo-spectral approach to inverse problems in interface dynamics

    Full text link
    An improved scheme for computing coupling parameters of the Kardar-Parisi-Zhang equation from a collection of successive interface profiles, is presented. The approach hinges on a spectral representation of this equation. An appropriate discretization based on a Fourier representation, is discussed as a by-product of the above scheme. Our method is first tested on profiles generated by a one-dimensional Kardar-Parisi-Zhang equation where it is shown to reproduce the input parameters very accurately. When applied to microscopic models of growth, it provides the values of the coupling parameters associated with the corresponding continuum equations. This technique favorably compares with previous methods based on real space schemes.Comment: 12 pages, 9 figures, revtex 3.0 with epsf style, to appear in Phys. Rev.

    XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos

    Full text link
    A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure
    corecore