The objective of this research is to develop an improved polyamide 11 (PA11) polymer with
enhanced flame retardancy, thermal, and mechanical properties for selective laser sintering
(SLS) rapid manufacturing. In the present study, a nanophase was introduced into polyamide 11
via twin screw extrusion. Arkema Rilsan® polyamide 11 molding polymer pellets were used
with 1, 3, 5, and 7 wt% loadings of Arkema’s GraphistrengthTM multi-wall carbon nanotubes
(MWNTs) to create a family of PA11-MWNT nanocomposites.
Transmission electron microscopy and scanning electron microscopy were used to determine
the degree and uniformity of dispersion. Injection molded test specimens were fabricated for
physical, thermal, mechanical properties, and flammability measurements. Thermal stability of
these polyamide 11-MWNT nanocomposites was examined by TGA. Mechanical properties such
as ultimate tensile strength, rupture tensile strength, and elongation at rupture were measured.
Flammability properties were also obtained using the UL 94 test method. All these different
methods and subsequent polymer characteristics are discussed in this paper.Mechanical Engineerin