Abstract

Unitarity cannot be perserved order by order in ordinary perturbation theory because the constraint UU^\dagger=\1 is nonlinear. However, the corresponding constraint for K=lnUK=\ln U, being K=KK=-K^\dagger, is linear so it can be maintained in every order in a perturbative expansion of KK. The perturbative expansion of KK may be considered as a non-abelian generalization of the linked-cluster expansion in probability theory and in statistical mechanics, and possesses similar advantages resulting from separating the short-range correlations from long-range effects. This point is illustrated in two QCD examples, in which delicate cancellations encountered in summing Feynman diagrams of are avoided when they are calculated via the perturbative expansion of KK. Applications to other problems are briefly discussed.Comment: to appear in Phys. Rev.

    Similar works

    Available Versions

    Last time updated on 17/03/2019