1,248 research outputs found

    Persistent hypocalcaemia in a Chinese girl due to a novel de-novo activating mutation of the calciumsensing receptor gene

    Get PDF
    A significant proportion of patients formerly diagnosed with idiopathic hypoparathyroidism actually have activating mutation of the calcium-sensing receptor (CaSR) gene. Awareness of the possibility of activating mutation of CaSR gene in patients with sporadic idiopathic hypoparathyroidism is important because of its relevance to clinical management. This report is of a novel activating mutation of the CaSR gene identified in a 10-year-old Chinese girl who was initially diagnosed as having idiopathic hypoparathyroidism at 6 years of age after presenting with seizures. Her serum calcium level was difficult to maintain near the lower limit of normal despite treatment with high-dose calcitriol. Treatment with calcitriol produced significantly elevated urinary calcium-to-creatinine ratio. Direct sequencing of the CaSR gene showed a novel heterozygous mutation (p.Q735P (c.2204A>C)). Molecular genetic analysis of her parents demonstrated that both parents did not harbour the child's mutation, indicating that her mutation had arisen de novo. © 1995-2011 HKAM.published_or_final_versio

    Sea lice exposure to non-lethal levels of emamectin benzoate after treatments: a potential risk factor for drug resistance

    Get PDF
    The avermectin derivative emamectin benzoate (EMB) has been widely used by salmon industries around the world to control sea lice infestations. Resistance to this anti-parasitic drug is also commonly reported in these industries. The objective of this study was to quantify the number of sea lice potentially exposed to sub-lethal concentrations of EMB while fish clear the drug after treatments. We assessed juvenile sea lice abundance after 38 EMB treatments on six Atlantic salmon farms, in a small archipelago in British Colombia, Canada, between 2007 and 2018. We fitted a standard EMB pharmacokinetic curve to determine the time when fish treated with this product would have EMB tissue concentrations below the recommended target therapeutic level. During the study, we estimated that for each sea lice treatment there was, on average, an abundance of 0.12 juvenile sea lice per fish during the time period when the concentrations of EMB would have been lower than 60ppb, the recommended therapeutic treatment level for sea lice. The findings from this study on metaphylactic anti-parasitic treatments identify a potential driver for drug resistance in sea lice that should be further explored

    Effect of sucralfate on gastric mucosal blood flow in rats

    Get PDF
    Sucralfate possesses site protective and cytoprotective actions and heals ulcers effectively, but its effect on gastric mucosal blood flow is unknown. Using an ex vivo gastric chamber preparation, we studied the effect of sucralfate on gastric mucosal blood flow in rats by laser doppler flowmetry. Under both fasting and fed states, measurements of gastric mucosal blood flow and damage were made in rats after topical application of absolute ethanol alone or after pretreatment with sucralfate. Gastric mucosal damage was assessed by measuring the total area of haemorrhagic mucosal lesions. Ethanol induced gastric mucosal lesions were significantly less with sucralfate pretreatment than without (p less than 0.008). Mucosal blood flow significantly fell after ethanol application (p less than 0.001). The fall was significantly less in fed than in fasted rats (p less than 0.05), and after pretreatment with sucralfate 100 mg or 200 mg than without in both fasted (p less than 0.0008 and 0.00001, respectively) and fed (p less than 0.002 and 0.001, respectively) rats. Graded doses of sucralfate (25-400 mg) resulted in an increase in gastric mucosal blood flow in a dose dependent manner (r = 0.731, p less than 0.001). In conclusion that sucralfate increases gastric mucosal blood flow in rats and lessens the fall in blood flow in rats treated with ethanol, and this action may contribute to its protection against the vascular damage of mucosa by ethanol.published_or_final_versio

    Effect of sucralfate on gastric mucosal blood flow in rats

    Get PDF
    Sucralfate possesses site protective and cytoprotective actions and heals ulcers effectively, but its effect on gastric mucosal blood flow is unknown. Using an ex vivo gastric chamber preparation, we studied the effect of sucralfate on gastric mucosal blood flow in rats by laser doppler flowmetry. Under both fasting and fed states, measurements of gastric mucosal blood flow and damage were made in rats after topical application of absolute ethanol alone or after pretreatment with sucralfate. Gastric mucosal damage was assessed by measuring the total area of haemorrhagic mucosal lesions. Ethanol induced gastric mucosal lesions were significantly less with sucralfate pretreatment than without (p less than 0.008). Mucosal blood flow significantly fell after ethanol application (p less than 0.001). The fall was significantly less in fed than in fasted rats (p less than 0.05), and after pretreatment with sucralfate 100 mg or 200 mg than without in both fasted (p less than 0.0008 and 0.00001, respectively) and fed (p less than 0.002 and 0.001, respectively) rats. Graded doses of sucralfate (25-400 mg) resulted in an increase in gastric mucosal blood flow in a dose dependent manner (r = 0.731, p less than 0.001). In conclusion that sucralfate increases gastric mucosal blood flow in rats and lessens the fall in blood flow in rats treated with ethanol, and this action may contribute to its protection against the vascular damage of mucosa by ethanol.published_or_final_versio

    Suppression of hypoxia inducible factor-1α (HIF-1α) by YC-1 is dependent on murine double minute 2 (Mdm2)

    Get PDF
    Inhibition of HIF-1α activity provides an important strategy for the treatment of cancer. Recently, 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1) has been identified as an anti-HIF-1α drug in cancer therapy with unclear molecular mechanism. In the present study, we aimed to investigate the effect and mechanism of YC-1 on HIF-1α in a hepatocellular carcinoma cell line under hypoxic condition, which was generated by incubating cells with 0.1% O2. The phenotypic and molecular changes of cells were determined by cell proliferation assay, apoptosis assay, luciferase promoter assay, and Western blot analysis. YC-1 arrested tumor cell growth in a dose-dependent manner, whereas it did not induce cell apoptosis. Hypoxia-induced upregulation of HIF-1α was suppressed by YC-1 administration. YC-1 inhibited HIF-1α protein synthesis under normoxia and affected protein stability under hypoxia. YC-1 suppressed the expression of total and phosphorylated forms of murine double minute 2 (Mdm2), whereas this inhibitory effect was blocked by overexpression of Mdm2. In conclusion, YC-1 suppressed both protein synthesis and stability of HIF-1α in HCC cells, and its inhibitory effects on HIF-1α were dependent on Mdm2. © 2006 Elsevier Inc. All rights reserved.postprin

    Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon

    Get PDF
    Microwave pyrolysis using a well-mixed bed of activated carbon as both the microwave absorber and reaction bed was investigated for its potential to recover useful products from waste palm cooking oil – a cooking oil widely used in Asia. The carbon bed provided rapid heating (∼18 °C/min) and a localized reaction hot zone that thermally promoted extensive pyrolysis cracking of the waste oil at 450 °C, leading to increased production of a biofuel product in a process taking less than 25 min. It also created a reducing reaction environment that prevented the formation of undesirable oxidized compounds in the biofuel. The pyrolysis produced a biofuel product that is low in oxygen, free of sulphur, carboxylic acid and triglycerides, and which also contains light C10_{10}-C15_{15} hydrocarbons and a high calorific value nearly comparable to diesel fuel, thus showing great potential to be used as fuel. This pyrolysis approach offers an attractive alternative to transesterification that avoids the use of solvents and catalysts, and the need to remove free fatty acids and glycerol from the hydrocarbon product. The pyrolysis apparatus operated with an electrical power input of 1.12 kW was capable of producing a biofuel with an energy content equivalent to about 3 kW, showing a positive energy ratio of 2.7 and ≥73% recovery of the energy input to the system. The results show that the pyrolysis approach has huge potential as a technically and energetically viable means for the recovery of biofuels from the waste oil.The authors acknowledge the financial support by the Ministry of Science, Technology and Innovation and the Ministry of Higher Education Malaysia for the conduct of the research under the E-Science fund (UMT/RMC/SF/13/52072(5), Vot 52072) and the FRGS grant (FRGS/1/2016/TK07/UMT/02/3, Vot 59434).This is the author accepted manuscript. The final version is available from Elsevier via https://doi.org/10.1016/j.energy.2016.09.07

    Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus

    Get PDF
    A data-driven model is used to analyse the global effects of biodiesel on the energy–water–food (EWF) nexus, and to understand the complex environmental correlation. Several criteria to measure the sustainability of biodiesel and four main limiting factors for biodiesel production are discussed in this paper. The limiting factors includes water stress, food stress, feedstock quantity and crude oil price. The 155-country model covers crude oil prices ranging from USD10/bbl to USD160/bbl, biodiesel refinery costs ranging from -USD0.30/L to USD0.30/L and 45 multi-generation biodiesel feedstocks. The model is capable of ascertaining changes arising from biodiesel adoption in terms of light-duty diesel engine emissions (NO, CO, UHC and smoke opacity), water stress index (WSI), dietary energy supply (DES), Herfindahl–Hirschman index (HHI) and short-term energy security. With the addition of potential biodiesel production, the renewable energy sector of global primary energy profile can increase by 0.43%, with maximum increment up to 10.97% for Malaysia. At current crude oil price of USD75/bbl and refinery cost of USD0.1/L, only Benin, Ireland and Togo can produce biodiesel profitably. The model also shows that water requirement varies non-linearly with multi-feedstock biodiesel production as blending ratio increases. Out of the 155 countries, biodiesel production is limited by feedstock quantity for 82 countries, 47 are limited by crude oil price, 20 by water stress and 6 by food stress. The results provide insights for governments to set up environmental policy guidelines, in implementing biodiesel technology as a cleaner alternative to diesel

    Intramuscular midazolam, olanzapine, or haloperidol for the management of acute agitation: A multi-centre, double-blind, randomised clinical trial

    Get PDF
    © 2021 The Authors Background: The safety and effectiveness of intramuscular olanzapine or haloperidol compared to midazolam as the initial pharmacological treatment for acute agitation in emergency departments (EDs) has not been evaluated. Methods: A pragmatic, randomised, double-blind, active-controlled trial was conducted from December 2014 to September 2019, in six Hong Kong EDs. Patients (aged 18–75 years) with undifferentiated acute agitation requiring parenteral sedation were randomised to 5 mg intramuscular midazolam (n = 56), olanzapine (n = 54), or haloperidol (n = 57). Primary outcomes were time to adequate sedation and proportion of patients who achieved adequate sedation at each follow-up interval. Sedation levels were measured on a 6-level validated scale (ClinicalTrials.gov Identifier: NCT02380118). Findings: Of 206 patients randomised, 167 (mean age, 42 years; 98 [58·7%] male) were analysed. Median time to sedation for IM midazolam, olanzapine, and haloperidol was 8·5 (IQR 8·0), 11·5 (IQR 30·0), and 23·0 (IQR 21·0) min, respectively. At 60 min, similar proportions of patients were adequately sedated (98%, 87%, and 97%). There were statistically significant differences for time to sedation with midazolam compared to olanzapine (p = 0·03) and haloperidol (p = 0·002). Adverse event rates were similar across the three arms. Dystonia (n = 1) and cardiac arrest (n = 1) were reported in the haloperidol group. Interpretation: Midazolam resulted in faster sedation in patients with undifferentiated agitation in the emergency setting compared to olanzapine and haloperidol. Midazolam and olanzapine are preferred over haloperidol's slower time to sedation and potential for cardiovascular and extrapyramidal side effects. Funding: Research Grants Council, Hong Kong

    Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques

    Get PDF
    This paper begins with a review on the current techniques used for the treatment and recovery of waste oil, which is then followed by an extensive review of the recent achievements in the sustainable development and utilization of pyrolysis techniques in energy recovery from waste oils. The advantages and limitations shown by the use of pyrolysis technique and other current techniques were discussed along with the future research that can be performed on the pyrolysis of waste oil. It was revealed that the current techniques (transesterification, hydrotreating, gasification, solvent extraction, and membrane technology) are yet to be sustainable or completely feasible for waste oil treatment and recovery. It was established that pyrolysis techniques offer a number of advantages over other existing techniques in recovering both the energetic and chemical value of waste oil by generating potentially useful pyrolysis products suitable for future reuse. In particular, microwave pyrolysis shows a distinct advantage in providing a rapid and energy-efficient heating compared to conventional pyrolysis techniques, and thus facilitating increased production rates. It was found that microwave pyrolysis of waste oil showed good performance with respect to product yield, reaction time, energy consumption, and product quality, and thus showing exceptional promise as a sustainable means for energy recovery from waste oils. Nevertheless, it was revealed that some important characteristics of the pyrolysis process have yet to be fully investigated. It was thus concluded that more studies are needed to extend existing understanding in the optimal reaction and process parameters in order to develop the pyrolysis technology to be a sustainable and commercially viable route for energy recovery from problematic waste oils.The authors acknowledges the financial support by Ministry of Science, Technology, and Innovation Malaysia (MOSTI), Ministry of Higher Education Malaysia (MOHE), and Universiti Malaysia Terengganu for the conduct of the research under the E-Science fund (UMT/RMC/SF/13/52072(5), Vot no.: 52072), the Fundamental Research Grant Scheme (Project no.: FRGS/1/2013/TK05/UMT/02/2, Vot no.: 59296), and the Research Acculturation Grant Scheme (Project no.: RAGS/2012/UMT/TK07/3, Vot no.: 57085).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.rser.2015.09.00

    Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties

    Get PDF
    Used frying oil (UFO), a waste produced in large volume each year worldwide, represents a potential resource for biofuel production rather than a disposal problem for modern society. Pyrolysis technique using microwave heating offers a promising approach for the conversion of UFO into biofuel products with improved properties. In this study, pyrolysis of UFO was performed by contacting with a bed of microwave absorbents heated by microwave radiation. The pyrolysis approach was examined using different materials as the reaction bed, comprising particulate carbon, activated carbon and mesoporous aluminosilicate (MCM-41). The use of particulate and activated carbon as the reaction bed provided a fast heating rate and extensive cracking capacity to pyrolyze the used oil, thus showing favorable features that could lead to short process time and less energy usage. This resulted in a production of a high yield of a biofuel product (up to 73 wt%) in a process taking less than 35 min. The biofuel showed a composition dominated by light C5_{5}-C20_{20} aliphatic hydrocarbons with low amounts of oxygenated compounds (≤11%). In particular, the oil product obtained from activated carbon bed showed a low nitrogen content and was free of carboxylic acid and sulphur. The absence of carboxylic acids with low amounts of oxygenated compounds could reduce the formation of oxygenated by-products that could generate undesirable acidic tar or potentially hazardous sludge in the biofuel during storage. Combined with the detection of a high calorific value (46 MJ/kg) nearly comparable to diesel fuel, the biofuel shows great promise to be upgraded for use as a ‘cleaner’ fuel source with potentially reduced oxygenated by-products plus low or zero emissions of NOx_{x} and SOx_{x} during the use of the fuel in combustion process. This study also revealed that the use of activated carbon bed results in the highest energy recovery (88–90%) from the used frying oil. Our results demonstrated that the use of a microwave-heated reaction bed of activated carbon shows great potential as an improved and sustainable pyrolysis approach that is energy-efficient and timesaving for the recycling of used frying oil into a biofuel product with desirable properties. This pyrolysis approach provides an alternative to transesterification that avoids the use of solvents and catalysts, and thus could be developed further as a promising route to recycle various types of waste and biomass materials
    corecore