Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties

Abstract

Used frying oil (UFO), a waste produced in large volume each year worldwide, represents a potential resource for biofuel production rather than a disposal problem for modern society. Pyrolysis technique using microwave heating offers a promising approach for the conversion of UFO into biofuel products with improved properties. In this study, pyrolysis of UFO was performed by contacting with a bed of microwave absorbents heated by microwave radiation. The pyrolysis approach was examined using different materials as the reaction bed, comprising particulate carbon, activated carbon and mesoporous aluminosilicate (MCM-41). The use of particulate and activated carbon as the reaction bed provided a fast heating rate and extensive cracking capacity to pyrolyze the used oil, thus showing favorable features that could lead to short process time and less energy usage. This resulted in a production of a high yield of a biofuel product (up to 73 wt%) in a process taking less than 35 min. The biofuel showed a composition dominated by light C5_{5}-C20_{20} aliphatic hydrocarbons with low amounts of oxygenated compounds (≤11%). In particular, the oil product obtained from activated carbon bed showed a low nitrogen content and was free of carboxylic acid and sulphur. The absence of carboxylic acids with low amounts of oxygenated compounds could reduce the formation of oxygenated by-products that could generate undesirable acidic tar or potentially hazardous sludge in the biofuel during storage. Combined with the detection of a high calorific value (46 MJ/kg) nearly comparable to diesel fuel, the biofuel shows great promise to be upgraded for use as a ‘cleaner’ fuel source with potentially reduced oxygenated by-products plus low or zero emissions of NOx_{x} and SOx_{x} during the use of the fuel in combustion process. This study also revealed that the use of activated carbon bed results in the highest energy recovery (88–90%) from the used frying oil. Our results demonstrated that the use of a microwave-heated reaction bed of activated carbon shows great potential as an improved and sustainable pyrolysis approach that is energy-efficient and timesaving for the recycling of used frying oil into a biofuel product with desirable properties. This pyrolysis approach provides an alternative to transesterification that avoids the use of solvents and catalysts, and thus could be developed further as a promising route to recycle various types of waste and biomass materials

    Similar works