408 research outputs found

    Neurochemical characterization of brainstem Pro-opiomelanocortin cells

    Get PDF
    Financial Support: Work was supported by the Wellcome Trust (WT081713, WT098012 and 204815/Z/16/Z to LKH; 093566/Z/10/A to LKH/LKB), the Biotechnology and Biological Sciences Research Council (BB/K001418/1, BB/NO17838/1 to LKH), and the Medical Research Council (MRC; MC/PC/15077 to LKH). The Genomics and Transcriptomics Core facility utilized was supported by the MRC (MRC_MC_UU_12012/5) and Wellcome Trust (100574/Z/12/Z).Peer reviewedPublisher PD

    Loss of GPR75 protects against non-alcoholic fatty liver disease and body fat accumulation

    Get PDF
    Open Access via the Elsevier Agreement L.K.H. designed the experiments with input from F.M., G.S.H.Y., and J.J.R.; F.M. and J.I. created the CRISPR-Cas9-deleted Gpr75 mouse line with input from A.M.; A.L.-P., C.M., B.Y.H.L., G.K.C.D., N.S., P.B.M.d.M., R.C., K.K., E.J.G., J.R.B.P., F.G., J.R.S., and J.J.R. performed experiments and/or data analysis; D.T. provided reagents and intellectual contributions; and L.K.H. and A.L.-P. wrote the manuscript with input from all other authors.Peer reviewe

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity

    Get PDF
    Abstract: Neuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals

    Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function

    Get PDF
    The genetic mechanisms that determine the size of the adult pancreas are poorly understood. Imprinted genes, which are expressed in a parent-of-origin-specific manner, are known to have important roles in development, growth and metabolism. However, our knowledge regarding their roles in the control of pancreatic growth and function remains limited. Here we show that many imprinted genes are highly expressed in pancreatic mesenchyme-derived cells and explore the role of the paternally-expressed insulin-like growth factor 2 (Igf2) gene in mesenchymal and epithelial pancreatic lineages using a newly developed conditional Igf2 mouse model. Mesenchyme-specific Igf2 deletion results in acinar and beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intolerance during pregnancy, suggesting that the mesenchyme is a developmental reservoir of IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demonstrated by the absence of any discernible growth or functional phenotypes upon Igf2 deletion in the developing pancreatic epithelium. Additionally, increased IGF2 levels specifically in the mesenchyme, through conditional Igf2 loss-of-imprinting or Igf2r deletion, leads to pancreatic acinar overgrowth. Furthermore, ex-vivo exposure of primary acinar cells to exogenous IGF2 activates AKT, a key signalling node, and increases their number and amylase production. Based on these findings, we propose that mesenchymal Igf2, and perhaps other imprinted genes, are key developmental regulators of adult pancreas size and function

    How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis

    Get PDF
    The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be highly informative. In this chapter we discuss the evolution of B. pertussis, including how vaccination is changing the circulating B. pertussis population at the gene-level, and how new sequencing technologies are revealing previously unknown levels of inter- and intra-strain variation at the genome-level

    A Genome-Wide Linkage and Association Scan Reveals Novel Loci for Hypertension and Blood Pressure Traits

    Get PDF
    Hypertension is caused by the interaction of environmental and genetic factors. The condition which is very common, with about 18% of the adult Hong Kong Chinese population and over 50% of older individuals affected, is responsible for considerable morbidity and mortality. To identify genes influencing hypertension and blood pressure, we conducted a combined linkage and association study using over 500,000 single nucleotide polymorphisms (SNPs) genotyped in 328 individuals comprising 111 hypertensive probands and their siblings. Using a family-based association test, we found an association with SNPs on chromosome 5q31.1 (rs6596140; P<9×10−8) for hypertension. One candidate gene, PDC, was replicated, with rs3817586 on 1q31.1 attaining P = 2.5×10−4 and 2.9×10−5 in the within-family tests for DBP and MAP, respectively. We also identified regions of significant linkage for systolic and diastolic blood pressure on chromosomes 2q22 and 5p13, respectively. Further family-based association analysis of the linkage peak on chromosome 5 yielded a significant association (rs1605685, P<7×10−5) for DBP. This is the first combined linkage and association study of hypertension and its related quantitative traits with Chinese ancestry. The associations reported here account for the action of common variants whereas the discovery of linkage regions may point to novel targets for rare variant screening

    Global gene expression profile progression in Gaucher disease mouse models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells) in visceral organs and their abnormal functions are obscure.</p> <p>Results</p> <p>To elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct <it>Gba1 </it>point-mutated mice (V394L/V394L and D409 V/null). About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change), representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk) of INFγ-regulated pro-inflammatory (13) and IL-4-regulated anti-inflammatory (11) cytokine/mediator networks showed tissue differential profiles in the lung and liver of the <it>Gba1 </it>mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the <it>Gba1 </it>mutation.</p> <p>Conclusions</p> <p>Biochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology.</p
    corecore