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Abstract

The genetic mechanisms that determine the size of the adult pancreas are poorly under-

stood. Imprinted genes, which are expressed in a parent-of-origin-specific manner, are

known to have important roles in development, growth and metabolism. However, our

knowledge regarding their roles in the control of pancreatic growth and function remains lim-

ited. Here we show that many imprinted genes are highly expressed in pancreatic mesen-

chyme-derived cells and explore the role of the paternally-expressed insulin-like growth

factor 2 (Igf2) gene in mesenchymal and epithelial pancreatic lineages using a newly devel-

oped conditional Igf2 mouse model. Mesenchyme-specific Igf2 deletion results in acinar and

beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intoler-

ance during pregnancy, suggesting that the mesenchyme is a developmental reservoir of

IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demon-

strated by the absence of any discernible growth or functional phenotypes upon Igf2 deletion

in the developing pancreatic epithelium. Additionally, increased IGF2 levels specifically in

the mesenchyme, through conditional Igf2 loss-of-imprinting or Igf2r deletion, leads to pan-

creatic acinar overgrowth. Furthermore, ex-vivo exposure of primary acinar cells to exoge-

nous IGF2 activates AKT, a key signalling node, and increases their number and amylase

production. Based on these findings, we propose that mesenchymal Igf2, and perhaps other

imprinted genes, are key developmental regulators of adult pancreas size and function.
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Author summary

The pancreas is formed of two main components: the exocrine pancreas (producing diges-

tive enzymes that break down food so it can be easily absorbed by the intestine) and the

endocrine pancreas (producing insulin and other hormones that control blood sugar lev-

els). Additionally, the pancreas contains stromal cells (mesenchyme-derived cells) that

support the function of the exocrine and endocrine components. We know little about

how the pancreas reaches its normal size. In this study, using mouse genetic engeneering,

we explored the roles played by a hormone-like gene called Igf2, that is similar in structure

to insulin, and is active only on the chromosome inherited from the father. We found that

within the pancreas, Igf2 is mostly active in the mesenchyme-derived cells. When Igf2 is

lost specifically within these cells, the entire pancreas becomes smaller, with reduced

capacity to produce digestive enzymes and to maintain normal blood sugar levels during

pregnancy. Increased IGF2 levels in the mesenchyme-derived cells leads to a larger pan-

creas, while no effects are observed when Igf2 is lost in the exocrine and endocrine pan-

creas. Our results demonstrate that Igf2 activity in mesenchyme-derived cells is key for

the control of pancreas size and function.

Introduction

The mammalian pancreas plays a central role in energy homeostasis, which is achieved by

functionally and morphologically distinct exocrine and endocrine components. Optimal pan-

creatic function requires a match between pancreas size and the physiological demands of the

host organism. However, the genetic determinants of organ size, and the mechanisms that

achieve adequate relative organ size, are poorly understood. The size of the pancreas is thought

to be fixed early in development, limited by the size of the progenitor cell pool that is estab-

lished in the developing pancreatic bud [1]. In addition to autonomous cues in the epithelium,

pancreatic development is also dictated by non-autonomous signals from the mesenchyme.

Mesenchymal cells overlie the developing pancreatic bud and provide critical signals for the

expansion of both precursors and differentiated endocrine and exocrine cells [2]. These cells

are present throughout pancreas organogenesis, but the relative proportion of mesenchyme to

epithelium changes, with a dramatic reduction over time, as the mesenchyme differentiates

into more specialized cell types such as pericytes [3] and epithelial cells expand. Recent elegant

genetic manipulation approaches in the mouse have shown that mesenchymal cells regulate

pancreatic growth and branching at both early and late in utero developmental stages [2,4].

However, many of the mesenchymal signals that control these processes remain un-identified.

Moreover, the factors required for cell fate decisions that specify individual pancreas cell type

subsets are fairly well established but less is known about signalling pathways involved in pro-

liferation and survival of cell types.

Insulin-like growth factors (IGF1 and IGF2) are small mitogenic polypeptides (~7KDa)

with structural homology to pro-insulin. IGF2 is also a pro-survival factor, protecting against

apoptosis [5–7]. Although IGF expression is ubiquitous in many cell types, they are most

abundant in the cells and tissues of mesodermal origin, and form important components of

stem cell niches [8–13]. Igf2 transcription is regulated by genomic imprinting [14], an epige-

netic process that causes a subset of genes in the genome to be transcribed according to paren-

tal origin. Imprinted genes regulate key aspects of mammalian physiology, from growth to

energy homeostasis [15]. In most mouse and human tissues, Igf2 is only transcribed from the
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paternally inherited allele, with the maternal allele being repressed by a methylation sensitive

CTCF-dependent boundary that restricts the access of downstream enhancers to the Igf2 gene

promoters [16]. In humans, reduced Igf2 expression contributes to the intra-uterine growth

restriction in patients with Silver-Russell syndrome [17]. Conversely, bialellic Igf2 expression

caused by loss of Igf2 imprinting is observed in Beckwith-Wiedemann patients [18], a syn-

drome characterized by somatic overgrowth, neonatal hypoglycaemia with variable penetrance

and increased predisposition to tumours. In mice, increased supply of embryonic Igf2 above

biallelic expression can result in disproportionate overgrowth associated with heart enlarge-

ment, oedema and fetal death [19]. Igf2 null mice are viable, depending on the genetic back-

ground, but have almost half the adult body weight [19].

Key questions about how IGF2-mediated growth effects are developmentally programmed

and how IGF2 contributes to organ growth control in-vivo remain unanswered. The normal

timing, location and duration of IGF2 supply at the organ level are likely to be crucially impor-

tant. The pancreas serves as an interesting model for the study of these processes, as it requires

tight spatial and temporal regulation of proliferation, differentiation and morphogenesis. Very

little is known about the main sites of Igf2 expression and imprinting during pancreas develop-

ment. Moreover, most mouse transgenic studies conducted so far have been directed to the

beta-cells, in which Igf2 is overexpressed [20,21] or knocked-out [22], or focused on mice that

overexpress Igf2 [23,24] or lack Igf1 and Igf2 constitutively [25]. Here we describe the genera-

tion of a conditional knock-out allele for Igf2 and perform analyses of cell-type specific dele-

tions that target the developing pancreatic mesenchyme (Nkx3.2-Cre), or epithelium (Ptf1a-

Cre), with the overall aim of defining the paracrine and autocrine roles of IGF2 in pancreatic

growth.

Results

The mesenchyme-derived cells are the main source of Igf2 in the developing

perinatal and postnatal pancreas

We first sought to establish which major cell types within the developing mouse pancreas

express Igf2 transcripts and to determine their relative levels. To achieve this aim, we used a

recombinase inducible YFP reporter under the control of the Rosa26 locus (Rosa26YFP-stopfl/

fl) [26] and crossed this mouse model with transgenic strains that express Cre recombinase in

the main cell types of the developing pancreas, i.e. Nkx3.2-Cre: mesenchyme [27]; Ptf1a-Cre:

pancreatic epithelium [28]; RIP-Cre: beta-cells [29]. We confirmed the activity of each Cre line

by performing immunofluorescence staining for YFP in combination with cell-type specific

markers in histological sections (Fig 1A). We then performed an expression timeline analysis

based on fluorescence activated cell sorting (FACS) of YFP-positive cells isolated from pan-

creas at various developmental stages, ranging from embryonic day 16 (E16) to adulthood, fol-

lowed by qRT-PCR measurements of Igf2 mRNA levels (Fig 1B, S1A Fig). This analysis

revealed that mesenchyme-derived cells express the highest levels of Igf2 mRNA when com-

pared to beta-cells or non-mesenchyme cells (which is comprised of acinar, endocrine, ductal

and endothelial cells) (Fig 1B). At E16, mesenchyme-derived cells express 380 fold more Igf2
than beta-cells and 1.5 fold more than non-mesenchyme cells. At P14, the difference between

mesenchyme and non-mesenchyme is the greatest, with mesenchyme-derived cells expressing

700 fold more Igf2 than non-mesenchyme cells. The levels of Igf2 in mesenchyme-derived cells

remain high in the neonatal period until the weaning period (at P21 levels are 3.2 fold reduced

compared to E16, followed by a steep decline in adulthood) (Fig 1B). Interestingly, both non-

mesenchyme cells and the beta-cells decrease their Igf2 expression levels after E16. To verify

that the mesenchyme-derived cells express high levels of Igf2 mRNA, we next performed in
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situ hybridization analysis at E19, P2 and P5. Our results confirm that Igf2 transcripts are local-

ized in mesenchyme-derived cells surrounding the vessels, pancreatic acini and ducts, with

low to undetectable expression in endocrine and acinar cells (Fig 1C).

The results presented above suggest that Igf2 is a mesenchymal-derived cell marker in the

neonatal and post-natal period, with mostly restricted expression to these cell types compared

Fig 1. Developmental profiling of cell type specific Igf2 mRNA expression in mouse pancreas. (A) Assessment of Cre recombinase specificity using the Rosa26YFP-

stopfl/fl reporter mouse line at postnatal day 2. Cells with a functional Cre recombinase express YFP protein (green). Nkx3.2-Cre is active in mesenchyme-derived cells

(pericytes, smooth muscle cells, stromal cells surrounding pancreatic ducts and acini, fibroblasts and myofibroblasts), Ptf1a-Cre in pancreatic epithelium (acinar cells,

pancreatic islets and ducts) and RIP-Cre in pancreatic beta-cells. Sections were co-stained with insulin (INS) marker of pancreatic beta-cells; cholecystokinin (CK),

marker of epithelial cells lining pancreatic ducts; amylase (AMY) marker of acinar cells and CD31, marker of endothelial cells. Scale bars are as following: 500 μm in

panels i corresponding to each Cre-line; 50 μm in panels ii corresponding to each Cre-line; 100 μm (panel iii) and 200 μm (panels iv and v) for Nkx3.2-Cre. (B) Timeline

of Igf2 mRNA expression measured by qRT-PCR in YFP+ or YFP–FACS isolated cells from offspring of Nkx3.2-Cre or RIP-Cre females mated with Rosa26YFP-stopfl/fl

males (E–embryonic day; P–postnatal day). Highest levels of Igf2 expression are observed in the mesenchyme fraction (Nkx3.2-Cre YFP+ cells) throughout

development. Expression data is normalized to Ppia and is shown as average + SD (n = 3–5 per time point and cell fraction). (C) Igf2 mRNA analysis by in situ
hybridization at E19, P2 and P5 showing high levels of expression in mesenchymal cells (purple colour). AS–antisense probe; S–sense probe (negative control); Ac–

acinar cells; Isl–pancreatic islet; Du–pancreatic duct; arrows point to cells expressing high levels of Igf2 mRNA. Scale bars are as follows: E19 (300 μm); P2 (100 μm); P5

(30 μm for higher resolution panels ii and iii and 300 μm for lower resolution panels i and iv).

https://doi.org/10.1371/journal.pgen.1009069.g001
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to non-mesenchyme. To confirm this observation, we next performed RNA-seq analyses in

mesenchyme-derived cells and non-mesenchymal cells isolated by FACS from pancreases of

Rosa26YFP-stop+/fl; Nkx3.2Cre/+ mice at P2. We found over four thousand differentially

expressed genes (DEGs, fold change >1.5; FDR adjusted p value <0.05) between the mesen-

chyme-derived cells and non-mesenchyme cells in wild-type Igf2+/+ pancreases (S2A Fig, S1

Data). A number of these DEGs were validated by qRT-PCR in independent biological repli-

cates (S2B Fig). Using DAVID functional annotation (see Materials and Methods) we identi-

fied over 20 significantly enriched GO terms (FDR adjusted p value<0.05), which included

biological processes known to be involved in pancreatic mesenchyme function (e.g. Wnt sig-

nalling), early pancreas development (e.g. retinoic acid and SMAD signalling) and epithelial-

mesenchymal interactions (integrin-mediated signalling, cell adhesion, collagen catabolism)

(Fig 2A). This analysis also highlighted unexpected pathways, such as semaphorin-plexin and

insulin-like growth factor receptor signalling (Fig 2A). Notably, several gene members of the

IGF signalling family are highly enriched in mesenchyme-derived cells versus non-mesen-

chyme (Fig 2B). Interestingly, imprinted genes, with known roles in growth control, make up

almost one third of the top 30 genes most highly expressed genes in the pancreatic mesen-

chyme-derived cells, with Igf2 being the highest (Fig 2C) and one of the most enriched com-

pared to non-mesenchyme cells (53 fold) (S2A Fig, S1 Data). DAVID functional annotation

identified 17 GO terms enriched in non-mesenchyme cells including expected pathways, such

as digestion and endocrine pancreas development, as well as novel pathways, such as peptidyl-

tyrosine phosphorylation (S2C Fig, S1 Data). Contrary to mesenchyme-derived cells, no

imprinted genes are found amongst the top 30 most highly expressed genes in non-mesen-

chyme cells (S2D Fig).

The observation of high levels of expression in the mesenchyme-derived cells isolated at

P2 for several imprinted genes, including Igf2, prompted us next to extend our analysis to ear-

lier developmental time points. We analysed the recently published transcriptomes of E13.5,

E15.5 and E17.5 pancreatic mesenchyme-derived cells [3] isolated by FACS in Rosa26YFP-

stop+/fl; Nkx3.2Cre/+ genetic crosses, as also used in our study. Similar to our observations at

P2, the eight imprinted genes exhibit very high levels of expression at all three embryonic

stages (Fig 2D) and Igf2 ranks among the top 22 most highly expressed genes. Additionally,

all gene members of the IGF signalling family identified in our analysis at P2 were expressed

in E13.5, E15.5 and E17.5 pancreatic mesenchyme-derived cells, with ten of these genes

reaching levels above 50 FPKM at all three developmental time points (Fig 2E). Our analysis

further shows that at all three embryonic stages, as well as at P2, the pancreatic mesenchyme-

derived cells express not only pericyte markers, as previously published [3], but also markers

of other cell types, including smooth muscle cells, fibroblasts and myofibroblasts (S3 Fig),

and in agreement with the highly heterogeneous histological features that we observed at P2

(Fig 1A).

To accurately measure the contribution of the various cell types to the overall pancreatic

Igf2 levels in the neonatal period, we analysed cell-type specific deletions of Igf2 using floxed

mice (Igf2+/fl) that we generated (S4 Fig, S5 Fig). Deletion of Igf2 from mesenchymal-derived

cells reduced its total pancreatic levels by more than 80% (Fig 2F). Notably, mesenchyme-

derived cells represent 10.3 ± 1.2% (n = 7) of the pancreatic tissue weight at this time point, as

measured by stereology. Ptf1a-Cre mediated deletion of Igf2 in exocrine, endocrine and ductal

cells (S1B Fig) showed no discernible changes in the whole pancreas Igf2 mRNA, which is con-

sistent with in situ hybridisation data shown (Fig 1C). Deletion of Igf2 from endothelial cells

(mediated by Tek-Cre [30]) reduced Igf2 mRNA with approximately 20–25% (Fig 2F). Alto-

gether, these results demonstrate that the mesenchyme-derived cells are the main source of

Igf2 in the pancreas during late gestation and early postnatal life.
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Fig 2. Perinatal pancreatic mesenchyme-derived cells are enriched in imprinted genes (including Igf2) and genes related to IGF signalling. (A) Top scoring

biological processes containing genes enriched in the pancreatic mesenchyme-derived cells as identified by DAVID functional annotation. The dotted line in panel

corresponds to a p value of 0.05. (B) Genes related to IGF signalling that are significantly enriched in mesenchyme-derived cells. Data is shown as average FPKM + SEM

(n = 4), ranked by levels of expression. FDR adjusted p values: � p<0.05, �� p<0.01 and ��� p<0.001. (C) Top 30 expressed genes with highest FPKM values in pancreatic

mesenchyme-derived cells (average FPKM + SEM in mesenchyme and non-mesenchyme cells with n = 4 per group) at P2. Note that all 30 genes are significantly

enriched in mesenchyme compared to non-mesenchyme (>1.5 fold, FDR adjusted p value<0.05). Asterisks indicate imprinted genes, of which there are 8 amongst the

top 30. (D) RNA-seq data showing high levels of expression in mesenchyme-derived cells (as FPKM ± SEM) during embryonic life (E13.5, E15.5 and E17.5, n = 2 per

developmental stage; data derived from [3]) of the top eight imprinted genes identified at P2 as shown in panel (C). (E) RNA-seq data showing high levels of expression

in mesenchyme-derived cells (as FPKM ± SEM) during embryonic life (E13.5, E15.5 and E17.5, n = 2 per developmental stage; data derived from [3]) of genes related to
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Mesenchyme-specific Igf2 signalling controls the growth of exocrine and

endocrine pancreas

To assess whether mesenchymal Igf2 plays a role in controlling the early growth of the pan-

creas, Igf2+/fl; Nkx3.2Cre/+ knockout mice were first analysed at the neonatal stage P2 (Fig 3A–

3D). As expected, paternal transmission of the mutation resulted in 99% reduction of Igf2 lev-

els at the mRNA level in FACS-isolated mesenchymal cells (Fig 3A), and absence of protein by

immunofluorescence (Fig 3B). Mice with deletion of the paternal Igf2 allele have normal body

weight, but significantly lighter pancreases (69% of normal) compared to littermate controls

(Fig 3C, S6A Fig). Deletion of the maternal Igf2 allele has no phenotypic effects, which is con-

sistent with findings that the maternal allele is transcriptionally inactive due to imprinting

(S6B and S6C Fig). Importantly, Nkx3.2-Cre or Igf2 floxed carrier mice are indistinguishable

from wild-type littermates (S6A and S6B Fig). We next measured the number of cell nuclei in

IGF signalling identified at P2 as shown in panel (B). (F) Residual Igf2 mRNA levels after conditional Igf2 deletion in different pancreatic cell types, measured by

qRT-PCR in whole pancreas lysates at P2 from offspring of heterozygous Cre females mated with Igf2+/fl males. Residual levels of Igf2 mRNA in each mutant are

indicated as percentage values of controls. Data was normalized to Ppia and shown as individual values and averages ± SD relative to levels in control littermates, which

were arbitrarily set to 100; (n = 6–7 samples per genotype; N.S.–non-significant; � p<0.05; ��� p<0.001 by unpaired Student’s t-test).

https://doi.org/10.1371/journal.pgen.1009069.g002

Fig 3. Impact of mesenchyme-specific deletion of Igf2 on pancreas at postnatal day 2 (P2). (A) Left: schematic representation of conditional Igf2 deletion from the

pancreatic mesenchyme. Right: reduced Igf2 mRNA expression levels in FACS-isolated pancreatic mesenchyme-derived cells of mutant mice (Mut: Igf2+/fl; Rosa26YFP-

stop+/fl; Nkx3.2Cre/+) compared to control littermates (C: Igf2+/+; Rosa26YFP-stop+/fl; Nkx3.2Cre/+) measured by qRT-PCR (data normalized to Ppia and shown relative to

levels in controls). (B) Representative immunofluorescence confocal microscopy showing cytoplasmatic staining (inset) for IGF2 in pancreases of control mice (Igf2+/+)

and absence of signal in mutants (Igf2+/fl; Nkx3.2Cre/+). Green–IGF2; blue–DAPI staining of nuclei; scale bars– 100 μm and 10 μm for lower and higher magnification

panels, respectively. (C) Pancreas weights are significantly reduced in mutants with conditional deletion of Igf2 in the mesenchyme (Mut: Igf2+/fl; Rosa26YFP-stop+/fl;

Nkx3.2Cre/+), compared to littermate controls (C: Igf2+/+; Rosa26YFP-stop+/fl). Body weights are similar between genotypes. (D) Stereological measurements show

significant reductions in the total number of nuclei/section, acinar mass and beta-cell mass (shown as %) in mutants (Mut: Igf2+/fl; Rosa26YFP-stop+/fl; Nkx3.2Cre/+),

compared to littermate controls (C: Igf2+/+; Rosa26YFP-stop+/fl; Nkx3.2Cre/+), but not for the mesenchyme mass. For all graphs, data is shown as individual values and

averages ± SD; N.S.–non-significant, � p<0.05, �� p<0.01 and ��� p<0.001 by unpaired Student’s t tests [panels (A), (C), and (D)].

https://doi.org/10.1371/journal.pgen.1009069.g003
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DAPI-stained paraffin sections to establish if the loss of pancreas weight was due to hypoplasia.

We found that the number of cell nuclei was significantly reduced in mutants (74% of normal)

compared to controls (Fig 3D). This finding suggests that mutant pancreases are smaller due a

reduction in cell numbers, which is in agreement with the well-established role for IGF2 in the

control of cell proliferation and survival. Stereological analysis revealed that loss of Igf2 in pan-

creatic mesenchyme leads to decreases in acinar and beta-cell mass, in line with the overall

pancreas weight deficit, while the mesenchymal mass remained unchanged (Fig 3D). Also con-

sistent with the decrease in acinar mass, mutant pancreases contained lower amounts of lipase

(11,367 ± 5674 in n = 6 mutants versus 18,343 ± 4238 in n = 7 controls, p = 0.035). Thus, our

data reveals that the mesenchyme-derived IGF2 is likely to control acinar and beta-cell growth

through paracrine signalling from the mesenchyme.

The microRNA miR-483 is located within the intron 4 of Igf2, which is deleted alongside

the Igf2 coding exons 4–6 upon Cre-mediated recombination. To rule out a contributory role

of this microRNA to the phenotype, we analysed pancreases of mice carrying a miR-483 dele-

tion [31], and found that it does not alter pancreas weight at P2 (S7 Fig). Furthermore, mir-
483 knockout mice are normal sized, viable and show no evidence of impaired glucose homeo-

stasis defects or other discernible phenotypes up to at least three months of age (Sekita et al.
manuscript in preparation). We therefore conclude that the growth phenotype in the Igf2+/fl;
Nkx3.2Cre/+ knockout mice can be attributed solely to IGF2 signalling actions.

Next, we used a well-established mouse model of Igf2 loss-of-imprinting–the H19DMD

conditional knockout [32]–to overexpress Igf2 specifically in the pancreatic mesenchyme

(H19DMDfl/+; Nkx3.2+/Cre) and investigated the effects on acinar growth (Fig 4A–4D). As

expected, deletion of the imprinting control region (DMD) from the maternal allele resulted

in increased Igf2 and decreased H19 RNA levels (160% and 18% of controls, respectively–Fig

4A) and increased IGF2 protein (Fig 4B), and was associated with a 29% increase in pancreas

weight, with similar body weights between genotypes at P2 (Fig 4C). The acinar cell mass was

increased by 34%, in line with the overall pancreas weight increase (Fig 4D). Beta-cell mass

remained unchanged, while the mesenchymal mass increased by 45% (Fig 4D). We then used

an Igf2 gain-of-function model that does not lead to transcriptional changes in Igf2 mRNA but

instead results in increased IGF2 protein (Fig 4E–4G). Accordingly, we deleted the IGF-type II

receptor that is required for recycling IGF2 via lysosome degradation [33], specifically in the

pancreatic mesenchyme (Igf2rfl/+; Nkx3.2+/Cre) (Fig 4E). Reduced Igf2r mRNA levels in the

mesenchyme cells (25% of controls), was associated with a 20% increase in pancreas weight,

with similar body weights between genotypes at P2 (Fig 4F). The acinar cell mass was also

increased by 33% in this model (Fig 4G). Additionally, beta-cell mass was also increased, but

the observed difference between groups (31%) did not reach statistical significance (p = 0.099),

while mesenchymal mass remained unchanged (Fig 4G). Therefore, the two gain-of-function

genetic models further demonstrate that IGF2 produced by the pancreatic mesenchyme-

derived cells controls the growth of the acinar cells in a paracrine manner.

Mesenchyme-derived IGF2 exerts paracrine effects on pancreatic

epithelium in vivo and acinar cells respond to exogenous IGF2 in vitro
To investigate the molecular signatures associated with the paracrine effects exerted by the

mesenchyme-derived IGF2, we performed genome wide-transcriptional profiling by RNA-seq

in both fractions of Igf2+/fl; Nkx3.2Cre/+ mutants (i.e. mesenchyme-derived cells with Igf2
deleted and the corresponding non-mesenchyme fraction), compared to mesenchyme and

non-mesenchyme cells isolated from controls, at the neonatal P2 stage. We found that tran-

scriptional changes are far more widespread in the non-mesenchyme fraction (498 DEGs with
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Fig 4. Impact of mesenchyme-specific Igf2 gain-of-function on pancreas at postnatal day 2 (P2). (A) Left: schematic representation of conditional Igf2
overexpression in pancreatic mesenchyme. Right: increased Igf2 mRNA expression and reduced H19 RNA levels in whole pancreases of mutant mice (Mut: H19DMDfl/

+; Rosa26YFP-stopfl/+; Nkx3.2+/Cre) compared to control littermates (C: H19DMD+/+; Rosa26YFP-stopfl/+) measured by qRT-PCR (normalized to Ppia and shown

relative to levels in controls). (B) Left: western blot analysis of Prepro-IGF2 and Pro-IGF2 in the two models of Igf2 loss-of-function and Igf2 gain-of-function. Right:

quantification graph for Pro-IGF2/SOD1 ratios only. (C) Pancreas weights are significantly increased in mutants with conditional Igf2 overexpression in the

mesenchyme (Mut: H19DMDfl/+; Rosa26YFP-stopfl/+; Nkx3.2+/Cre), compared to littermate controls (C: H19DMD+/+; Rosa26YFP-stopfl/+). Body weights are similar

between genotypes. (D) Stereological measurements show a significant increase in acinar mass and mesenchyme mass, but not in beta-cell mass in mutants with

conditional Igf2 overexpression in the mesenchyme (Mut: H19DMDfl/+; Rosa26YFP-stopfl/+; Nkx3.2+/Cre), compared to littermate controls (C: H19DMD+/+;

Rosa26YFP-stopfl/+; Nkx3.2+/Cre). (E) Left: schematic representation of conditional Igf2r deletion in pancreatic mesenchyme. Right: reduced Igf2r mRNA levels in whole

pancreases of mutant mice (Mut: Igf2rfl/+; Rosa26YFP-stopfl/+; Nkx3.2+/Cre) compared to control littermates (C: Igf2r+/+; Rosa26YFP-stopfl/+) measured by qRT-PCR.

Data was normalized to Ppia and is shown relative to levels in controls (arbitrarily set to 1). (F) Pancreas weights are significantly increased in mutants with conditional

Igf2r deletion in the mesenchyme (Mut: Igf2rfl/+; Rosa26YFP-stopfl/+; Nkx3.2+/Cre), compared to littermate controls (C: Igf2r+/+; Rosa26YFP-stopfl/+). Body weights are

similar between genotypes. (G) Stereological measurements show a significant increase in acinar mass and a trend for increased beta-cell mass (P = 0.099), but similar

mesenchymal mass in mutants with conditional Igf2r deletion in the mesenchyme (C: Igf2r+/+; Rosa26YFP-stopfl/+; Mut: Igf2rfl/+; Rosa26YFP-stopfl/+; Nkx3.2+/Cre). For

all graphs, data is shown as individual values and averages ± SD; N.S.–non-significant, � p<0.05, �� p<0.01 and ��� p<0.001 by unpaired Student’s t tests [panels (A),

(C), (D), (E), (F) and (G)] or 1-way ANOVA followed by Dunnett’s post hoc test for multiple comparisons against the Igf2+/+; Nkx3.2Cre/+ controls [panel (B)].

https://doi.org/10.1371/journal.pgen.1009069.g004
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>1.5-fold change and FDR-adjusted p value <0.05) (Fig 5A, S2 Data) than in Igf2-deficient

mesenchyme-derived cells (151 DEGs; Fig 5A, S3 Data). DAVID functional annotation identi-

fied 15 enriched GO terms in the non-mesenchyme fraction (Fig 5B, S2 Data) but only 2 in the

Igf2-deficient mesenchyme fraction (namely, actin binding and inflammatory response, S3

Data). The top biological processes in the non-mesenchyme fraction enriched in genes up-reg-

ulated in mutants were related to digestion and inflammation/immune responses, and biologi-

cal processes enriched in genes down-regulated in mutants were related to erythrocyte

development and tRNA methylation (Fig 5B and 5C, S2 Data). These findings are in agree-

ment with the stereological analyses showing that loss of Igf2 from the mesenchyme-derived

cells impacts on the growth/function of the non-mesenchymal fraction through a paracrine

effect.

To provide additional evidence that mesenchyme-derived IGF2 acts on acinar cells in a

paracrine manner, we next isolated primary mesenchyme-derived and acinar cells from P2

pancreases (see Materials and Methods) (Fig 5D–5F). Mesenchymal-derived cells secreted

higher levels of IGF2 into the conditioned media compared to acinar cells (Fig 5G), a finding

that is consistent with higher levels of Igf2 mRNA expression in the mesenchyme-derived cells

in-vitro (Fig 5F) and in-vivo (Fig 1, Fig 2). We then tested the effect of exogenous IGF2 treat-

ment on acinar cells cultured ex-vivo. Isolated acinar cells treated with recombinant mouse

IGF2 showed increasing levels of AKT phosphorylation (S473) in a concentration-dependent

manner (Fig 5H). Additionally, treatment of acinar cells with 50 ng/ml IGF2 increased their

cell numbers and led to a modest, but significant increase in amylase production (Fig 5I). Alto-

gether, the ex-vivo data shows that mesenchyme-derived cells are capable of secreting IGF2

and that exogenous IGF2 induces intracellular signalling in acinar cells associated with

increased enzymatic output.

Post-weaning growth and glucose homeostasis analyses in Igf2 pancreas-

cell type specific knockouts

To investigate the impact of Igf2 loss-of-function from the developing mesenchyme and/or

epithelium on post-weaning growth and glucose homeostasis, single and double Nkx3.2-Cre

and Ptf1a-Cre Igf2 knockouts were analysed (Fig 6A). The pancreas weight deficit observed in

single Igf2+/fl; Nkx3.2Cre/+ knockouts at P2 is maintained at weaning (S8A Fig) and is also

observed at 9 weeks of age in single Igf2+/fl; Nkx3.2Cre/+ knockout males and females (Fig 6B).

However, in contrast to the P2 time point, body weights are now reduced, by approximately

12% at P21 (S8B Fig), and by 5% and 10% for females and males, respectively, at 9 weeks of age

(Fig 6C). After normalization for body weight, the mutant pancreases remain disproportion-

ately smaller at both P21 and 9 weeks time points (S8A Fig, Fig 6B). Double Igf2+/fl; Nkx3.2Cre/

+; Ptf1aCre/+ knockouts show similar pancreatic weights and body weight reductions to the sin-

gle Igf2+/fl; Nkx3.2Cre/+ knockout (Fig 6B and 6C), thus suggesting that IGF2 produced by the

endocrine and exocrine pancreas does not play major autocrine or paracrine growth roles that

alter pancreas size. Consistent with this hypothesis, single Igf2+/fl; Ptf1aCre/+ knockouts have

normal pancreas sizes and body weights (Fig 6B and 6C).

Glucose homeostasis, assessed by oral glucose tolerance tests (OGTT), was unaltered in sin-

gle Igf2+/fl; Nkx3.2Cre/+ and Igf2+/fl; Ptf1aCre/+ knockouts, as well as in double Igf2+/fl;
Nkx3.2Cre/+; Ptf1aCre/+ knockouts compared to Igf2+/fl controls at 8 weeks of age in both sexes

(Fig 6D and 6E). We next assessed glucose homeostasis during pregnancy, a naturally occur-

ring metabolic stress state. We found that 8 week old Igf2+/fl; Nkx3.2Cre/+ knockout females at

the E15 stage of pregnancy had similar levels of glycaemia and insulinemia compared to age-

matched pregnant Igf2+/fl littermate controls after fasting and prior to OGTT (time 0) (Fig 6F).
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However, during OGTT, pregnant Igf2+/fl; Nkx3.2Cre/+ knockout females became glucose intol-

erant compared to pregnant Igf2+/fl littermate controls (Fig 6F). Beta-cell mass, measured at

E15, was significantly smaller in pregnant Igf2+/fl; Nkx3.2Cre/+ knockout females compared to

pregnant Igf2+/fl littermate controls (Fig 6G). Thus, our results show that mesenchyme-specific

Igf2 deletion results in postnatal whole-body growth restriction and maternal glucose intoler-

ance during pregnancy.

Discussion

This study uncovers novel roles for IGF signalling in the developmental regulation of adult

pancreas size, with consequences for energy homeostasis and post-natal whole body-growth.

We first observed that gene members of the IGF signalling pathway, which include IGF2 and

IGF1 ligands, are highly enriched in the neonatal mesenchyme-derived cells compared to the

non-mesenchyme fraction. Moreover, IGF2 is the top expressed gene in the mesenchyme-

derived cells, as revealed by RNA-seq profiling at postnatal day 2 (P2) and one of the top ~25

most highly expressed genes at E13.5, E15.5 and E17.5. Mesenchyme-derived cells express the

highest levels of Igf2 mRNA compared to all other pancreatic cell types from E16 to 8 weeks

postnatally. At P2 we estimate, based on conditional deletions of Igf2 from the diverse cell

types, that ~75–85% of total Igf2 in the pancreas is expressed by the mesenchyme-derived cells,

~20–25% by the endothelium and less than 1% is derived from the epithelium. Therefore, we

hypothesized that mesenchymal IGF2/IGF signalling may play previously unanticipated roles

in pancreatic development and generated conditional specific mouse models mainly targeting

IGF2 levels in the mesenchyme.

We found that mesenchymal IGF2 is principally required for normal growth of the exocrine

pancreas. Deletion of Igf2 from the mesenchyme cells from E9.5 leads to hypoplasia of the

postnatal pancreas (~69%N at P2, ~67%N at P21 and ~79–83%N at 9 weeks of age). The acinar

mass is affected the most and is reduced, in line with the overall loss in pancreatic weight. This

finding is in agreement with the reports of reduced exocrine mass in mice that lack both IGF

ligands (i.e. mice lacking both Igf1 and Igf2 in all cells of the body), or their receptors (i.e. mice

constitutively lacking both Insr and Igf1r) [25]. However, the contribution of the individual

ligands or receptors to the loss of exocrine mass has remained unclear, mainly because Insr or

Igf1r single total knockouts result in either normal or increased exocrine mass, respectively,

Fig 5. Loss of Igf2 in pancreatic mesenchyme causes significant transcriptional changes in non-mesenchymal cells in vivo and acinar cells respond functionally to

exogenous IGF2 ex vivo. (A) Volcano plot representing all expressed transcripts (by RNA-seq) in Igf2-deficient pancreatic mesenchyme (left) and in corresponding

non-mesenchyme cell fraction (right), compared to mesenchyme and non-mesenchyme controls, respectively. Expression changes detected in the right panel thus

reflect changes caused by lack of Igf2 from the mesenchyme on neighbouring non-mesenchymal cells. Blue and red dots depict statistically significant down-regulated

and up-regulated genes (fold change>1.5 fold FDR adjusted p value<0.05), respectively, and black dots show genes that are not statistically different; (n = 3 mutants

and n = 4 controls per cellular fraction). There are more differentially expressed genes (DEGs) in the non-mesenchyme fraction (216 down-regulated and 282 up-

regulated genes) than in the mesenchyme (109 down-regulated and 42 up-regulated genes) (all genes are listed in S2 and S3 Data). (B) Biological processes enriched in

down-regulated (blue) and upregulated (red) genes between non-mesenchyme of Igf2+/fl; Nkx3.2Cre/+ mutants and Igf2+/+; Nkx3.2Cre/+ controls as identified by DAVID

(for a complete list of biological processes, see S2 Data). ACEA–activation of cysteine-type endopeptidase activity. The horizontal axis shows -Log10 of p value; the dotted

line corresponds to a FDR-corrected p value of 0.05. (C) DEGs in non-mesenchymal mutant cells compared to control cells, grouped according to selected enriched

biological processes shown in (B). Data is shown as average FPKM + SEM, ranked by levels of expression (the inset depicts lower expressed genes related to “digestion”,

with a different scale bar). FDR adjusted p values: � p<0.05, �� p<0.01 and ��� p<0.001. (D) Primary mesenchyme-derived cells (Mes) and acinar cells (Ac) isolated

from P2 pancreases. Representative images are shown after one and four days in culture. (E) Staining for the acinar marker amylase (AMY, red) in primary

mesenchyme-derived (Mes) and acinar (Ac) cells after four days in culture. Blue–DAPI, staining of nuclei; scale bars– 100 μm. (F) mRNA expression levels of acinar

(Try, Amy2) and mesenchymal (Sema5b, Sfrp1, Igf2) signature genes measured by qRT-PCR after four days of culture, showing high purity of the primary cell cultures.

(G) Measurement of IGF2 protein secreted by mesenchymal or acinar cells in the culture media. Dotted line corresponds to background readings in media only. (H)

Levels of AKT phosphorylation (pAKT-S473) after 10 minutes treatment of freshly isolated acinar cells with increasing doses of IGF2 (0nM to 50nM) by western

blotting, and quantified against total AKT levels (n = 4 independent biological replicates). (I) Effect of IGF2 treatment [IGF2 (+): 50 ng IGF2/ml] of primary acinar cells

on total cell number (left panel) compared to non-treated cells [(IGF2 (-)], and amylase production (U/L) normalized per protein content (right panel). For all graphs

shown in panels (F)–(I), data is shown as individual values and/or averages, error bars represent SD. � p<0.05, �� p<0.01, ��� p<0.001 by Mann-Whitney tests [(F),

(G)], Friedman’s test with Dunn’s correction for multiple comparisons (H) and the Wilcoxon matched-pairs signed rank test (I).

https://doi.org/10.1371/journal.pgen.1009069.g005
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and single Igf1 or Igf2 total knockouts were not studied for pancreatic phenotypes. Our work

now demonstrates that IGF2 is a key factor promoting acinar growth during development.

Crucially, we have ruled out a role for IGF2 expressed in the developing epithelium, which

includes IGF2 expressed in acinar cells, as a determinant of exocrine pancreas growth. Accord-

ingly, deletion of Igf2 using Ptf1a-Cre, results in normal pancreatic growth. We therefore con-

clude that the effect of IGF2 on pancreas growth is restricted primarily to signalling from the

mesenchyme.

We next addressed the question of how mesenchymal IGF2 regulates pancreas size. We

propose that this is mainly achieved through secretion of IGF2 from the mesenchyme and sig-

nalling to the neighbouring cells types in a paracrine manner (Fig 6H). This hypothesis is

based on the following findings: in primary cell cultures we show that mesenchyme-derived

cells secrete IGF2 into the culture media, and that exogenous IGF2 stimulates activation of a

key signalling node, AKT, downstream of IGF1R and INSR in acinar cells, increasing their

number and enzymatic production. In vivo, increased IGF2 levels specifically in the mesen-

chyme led to significant overgrowth of the exocrine pancreas, as shown in two distinct genetic

models (H19DMDfl/+; Nkx3.2+/Cre, and Igf2rfl/+; Nkx3.2+/Cre). Importantly, deletion of Igf2
from the mesenchyme leads to a reduction in beta-cell mass (~82% N at P2 and ~84% N in

pregnant females at E15), showing that the paracrine effects are not exclusive to the exocrine

pancreas. We found that mesenchyme mass at postnatal day 2 was not affected by the deletion

of mesenchymal Igf2 or overexpression of IGF2 in the mesenchymal Igf2r mutant model.

These findings strongly support the hypothesis that the effects of the mesenchyme are mainly

paracrine, thus suggesting that a) the pancreas growth restriction occurs independently from

the loss of mesenchyme-derived cells; b) the function of the IGF2 producing mesenchyme-

derived cells is mainly to act as a developmental reservoir for IGF2 paracrine signalling. The

lack of mesenchymal IGF2 has important physiological consequences. It is well established

that the pancreas size must match the physiological demands of the host organism to promote

nutrient digestion and absorption in the gut and to maintain glucose homeostasis. In this

study, we report that mesenchyme Igf2-deficient mice have a disproportionately smaller pan-

creas, with a 30% size reduction at P2, which is associated with a reduced output of secreted

acinar enzymes, such as lipase. Our data suggests that nutrient malabsorption due to loss of

exocrine mass and/or exocrine dysfunction might be causative of the postnatal growth restric-

tion, which is first observed in these mice at weaning and maintained throughout adulthood.

Mouse models with perturbations of lipase genes such as colipase (Clps) and pancreatic-lipase

related protein 2 (Pnliprp2) exhibit a similar body weight growth defect phenotype due to an

Fig 6. Growth and glucose homeostasis regulation in pancreas-cell type specific Igf2 knockout mice in adulthood. (A) Schematic representation of the mating

strategy used to generate control mice (black) and littermates with Igf2 deletion in the pancreatic mesenchyme only (purple), mesenchyme plus epithelium (orange) or

epithelium only (blue). (B) Pancreas weights at 9 weeks of age for males (n = 20–22 per genotype) and females (n = 11–15 per genotype). Significant reductions in weight

(shown as %) are only observed in mice that carry a deletion of Igf2 in the mesenchyme; values within brackets show % reduction after normalization to body weight; ���

p<0.001 by 1-way ANOVA with Dunnett’s multiple comparisons tests against controls. (C) Growth kinetics from weaning to 9 weeks of age for males (n = 20–22 per

genotype) and females (n = 11–15 per genotype). �� p<0.01 and ��� p<0.001 by repeated measures 1-way ANOVA with Dunnett’s post hoc test for multiple

comparisons against the controls. Oral glucose tolerance tests performed in 8-week old males (D) and females (E) fed chow diet, after six hours of fasting. (F) First two

graphs on left side: baseline glucose and insulin levels measured after six hours fasting (at T0), before the start of the oral glucose tolerance test (OGTT) (n = 16 Igf2+/fl

controls and n = 15 Igf2+/fl; Nkx3.2Cre/+mutants). Third graph: OGTTs performed in 8-week old Igf2 mesenchyme-specific deficient pregnant females (E15 of gestation).

Fourth graph: area under curve (AUC). (G) Left: insulin staining (brown) and hematoxylin counterstaining (blue) in sections collected from E15 pregnant females (scale

bars are 250 μm). Right: beta-cell mass quantification (n = 10 Igf2+/fl controls and n = 9 Igf2+/fl; Nkx3.2Cre/+mutants). For (D), (E) and (F, third graph) changes in blood

glucose concentrations (y-axis) from basal pre-treatment values with time (x-axis) after glucose administration are shown. The graphs on the right side indicate AUC,

calculated using the trapezoid rule. For all panels, data is shown as individual values or average values ± SD; N.S.–non-significant. � p<0.05 and ��� p<0.001 by

unpaired Student’s t tests [panel (G) right side and panel (H) right side], or two-way ANOVA with Sidak’s multiple comparison tests [panels (B), (C), (D), (E) and (G)

left side]. (H) Suggested model of mesenchymal IGF2 actions in the developing pancreas: IGF2 expression is high (IGF2high) in the mesenchymal cells (Mes) of the

pancreas and low (IGF2low) in other pancreatic cell types (Ac–acinar cells, Isl–pancreatic islet cells, Du–pancreatic duct cells). IGF2 produced by the mesenchymal cells

exerts paracrine effects (green arrows) on pancreatic acinar cells and pancreatic islets.

https://doi.org/10.1371/journal.pgen.1009069.g006
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inability to process fat from mother’s milk [34,35]. It has been suggested that the lipase defi-

ciency can programme a “set-point” of body weight, with an inability to catch-up in body

weight later, due to the effects of poor weight gain during the suckling period [34,35]. Interest-

ingly, RNA-seq shows that mesenchyme Igf2-deficient pancreases upregulate transcription of

exocrine genes involved in the production of digestive enzymes. We suggest that these changes

represent adaptive responses of the small exocrine pancreas to meet the demand for digestion

and absorption of nutrients in early postnatal life. However, this compensatory mechanism

might not be sufficient to match the demand, and whole-body growth restriction ensues. The

RNA-seq studies also showed increased expression of chemokines, which are normally up-reg-

ulated by pro-inflammatory stimuli and attract immune cells by inducing a response from the

innate and adaptive immune system [36,37]. Whether a pre-pancreatitis state exists, linked to

the premature activation of digestive enzymes in the interstitial space of the pancreas, and how

such a state might contribute to putative nutrient absorption abnormalities require further

investigation. We also observed that the loss of IGF2 paracrine effects from the mesenchyme

results in a modest reduction of the beta-cell mass that does not impact on glucose homeostasis

control in young mice under a normal diet and physiological state. However, induced meta-

bolic stress, as it occurs naturally during pregnancy, leads to glucose intolerance. We suggest

that the loss of beta-cell mass in the mutant pregnant females compared to controls is a con-

tributing factor for the observed glucose intolerance. Further work is required to understand

the precise mechanisms, which includes the generation of a double knockout of Igf2 from the

mesenchyme and the beta-cell. It is possible that a more severe glucose homeostasis in preg-

nancy will occur when the known autocrine IGF2 actions in the beta-cell are removed [22].

Our findings offer novel insights into mesenchymal factors that regulate pancreas organo-

genesis. Wnt, BMP, FGF and Hedgehog signalling pathways have been implicated as early

mesenchymal factors regulating pancreas development and growth [2,38–42], but for the

majority of these studies the specific roles in the mesenchyme could not be assessed (it has

only recently become possible to start interrogating the roles that genes play in the mesen-

chyme with the generation of specific Cre recombinases). To our knowledge, this study, using

a combination of loss and gain-of-function conditional mouse models, is the first to identify a

mesenchymal-specific paracrine growth signal of the developing pancreas. It also reveals that

IGF signalling plays previously unappreciated roles in the mesenchyme function and in the

epithelial-mesenchymal interactions during pancreas organogenesis. Igf1, like Igf2, is highly

enriched in the mesenchyme-derived cells compared to non-mesenchyme cells and paracrine

release of IGF1 from fibroblasts, which derive from the primitive mesenchyme, stimulate aci-

nar cell proliferation during regeneration from acute pancreatitis [43]. Interestingly, deletion

of Igf1 from the developing epithelium also results in normal exocrine pancreas growth [44],

similarly to the results reported here for Igf2. Our study has also highlighted a number of

growth-related imprinted genes (including Plagl1/Zac1 a master regulator of an imprinting

growth network [45]) that are highly enriched in the mesenchyme, and raises the interesting

hypothesis that genomic imprinting contributes significantly to mesenchymal-specific func-

tions during pancreas development.

Our postnatal studies provide proof of principle that lack of mesenchyme-derived IGF2 has

physiological consequences related to whole-body growth (first observable around weaning)

and glucose intolerance during pregnancy. It remains to be established if pregnancy-related

beta-cell mass expansion is impaired and the extent to which other metabolic stress states,

such as ageing, high fat diet, acute insulin resistance states, may uncover mesenchymal IGF2

effects on beta-cell function.

Our study has a number of limitations. Although we provide evidence that mesenchymal

IGF2 is a long-sought promotor of acinar growth, we have not established the precise timing
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of the actions of IGF2. IGF2 is well known to promote cell proliferation and survival, with the

main wave of these actions thought to occur in the mouse between E9-E10 [46]. Therefore, it

is likely that many of the mesenchymal IGF2 actions in promoting pancreatic growth start dur-

ing the earliest stages of pancreas development. However, based on RNA-seq data we also

observed very high levels of Igf2 expression at E13.5, E15.5, E17.5 and P2. Further to the well-

established mitogenic roles, IGF2 has anti-apoptotic actions in the endocrine pancreas during

the neonatal life [7,24]. Future systematic analyses based on pancreas stereology and measure-

ments of cell proliferation and apoptosis are therefore required to fully understand if IGF2

actions occur in the early mesenchyme and/or mesenchyme-derived cells in later fetal and

perinatal development, and the extent to which it influences the differentiation programmes of

progenitor cells into exocrine, endocrine and mesenchyme lineages. The genetic models we

use in this study have some limitations as well. The effects of both H19DMDfl/+; Nkx3.2+/Cre,

and Igf2rfl/+; Nkx3.2+/Cre models are not exclusively mediated through IGF2 signalling–

H19DMDfl/+; Nkx3.2+/Cre results in downregulation of H19 ncRNA and its associated exonic

miR-675 [47,48], and Igf2r serves as a mannose-6-phosphate receptor in addition to acting as

an IGF2 clearance receptor/signalling through G proteins [33,49]. Importantly, the complete

rescue of the overgrowth phenotypes due to deletions of maternal H19 or Igf2r alleles in an

Igf2-null background [50,51] shows that the majority of the effects are mediated through IGF2

signalling. However, we cannot exclude that subtle effects caused by IGF2-independent

actions, may explain some of the inconsistent observations regarding mesenchyme and beta-

cell mass between these models (Fig 3, Fig 4).

In summary, we report in this study that IGF2 growth actions in the pancreas are limited to

the highly expressing mesenchyme-derived cells, and that size-determining mechanisms are

programmed in early life by the activity of this important growth factor in a paracrine fashion,

with consequences for post-natal physiology. In general, this work provides novel insights into

how growth factors control pancreatic architecture and is highly relevant to pancreas

pathologies.

Materials and methods

Ethics statement

This research has been regulated under the Animals (Scientific Procedures) Act 1986 Amend-

ment Regulations 2012 following ethical review by the University of Cambridge Animal Wel-

fare and Ethical Review Body (AWERB). All mouse experiments were performed under PPL

No. 80/2484 (study plan 2484/25/13) and PPL No. 70/7594 (study plan 7594/4/15).

Generation of the Igf2fl/+ mouse

The Igf2 gene targeting vector carried a loxP site inserted 5’ of exon 4 and a loxP-flanked neo-

mycin resistance cassette (neoR) inserted 3’ of exon 6 (S4A Fig). Details of the cloning proce-

dures are available upon request. In brief, we used a 3.1-kb SalI-PacI genomic fragment (from

exon 2 to intron 3 of Igf2) as the 5’ region of homology (5’-ROH), a 5.8-kb PacI-AfeI genomic

fragment that includes the entire Igf2 coding sequence (exons 4 to 6) as internal ROH (Int-

ROH), and a 3.1-kb AfeI-BlpI genomic fragment (3’ of exon 6) as 3’-ROH. The Int-ROH was

flanked by a 5’ loxP site and a 3’ loxP-neoR-loxP sequence (S4A Fig). The targeting vector was

linearized at a unique ScaI site outside the area of homology and 50 μg linearized vector were

electroporated into passage 9, E14 129ola male ES cells, at 250V and 950 μF. Transfected cells

were plated onto 10 gelatinized 100-mm dishes pre-seeded with fibroblast feeder cells. After 24

h in nonselective medium, cells were incubated for 8 days with G418 medium (200 μg/μl) to

select for neomycin resistance. Resistant clones were picked at day 9 and expanded into
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96-well plates pre-seeded with fibroblast feeder cells. We initially screened 384 G418-resistant

clones by Southern blotting analysis of genomic DNA (gDNA) digested with EcoRI and

hybridized the blots with a unique 511 bp 5’ probe (located external to 5’-ROH and obtained

by PCR amplification using primers 5’Pr-F: 5’-AACAACGCGGTGGTAGGGAA-3’ and 5’Pr-

R: 5’-TCAGCAGAAAAAGAAGCAGGGC-3’). Two correctly targeted clones at the 5’ end

were then verified by Southern blot (EcoRI digested DNA) using a 590 bp 3’ probe (located

external to 3’-ROH and obtained by PCR amplification using primers 3’Pr-F: 5’-ACAAAGCC

CAAGACAACTCC-3’ and 3’Pr-R: 5’-CTTCCACAGTTCAAGCAACC-3’) and an additional

check for multiple integrations elsewhere in the genome using a 583 bp Internal probe (located

in Igf2 exon 6 and obtained by PCR amplification with primers Int-F: 5’-AGAACCCAAGAA

GAAAGGAAG-3’ and Int-R: 5’-AGAAAGACAGAACTAGCAGCC-3’). One clone with a sin-

gle integration site and correctly targeted 5’ and 3’ loxP sites was thus identified (S4A Fig),

with the loxP sequences further verified by Sanger sequencing. The neoR cassette was excised

by transiently transfecting this ES cell clone with Cre recombinase (pMC-Cre vector), followed

by two rounds of subcloning. Correctly excised clones that carry a single 3’ loxP site were veri-

fied by PCR screening (480 ES subclones) and gDNA digestion with SphI restriction enzyme,

followed by Southern blot analysis using the same 583 bp Internal probe described above

(S4C–S4F Fig). Primers used for PCR screening of in vitro neoR deletion were: F0 5’-TGAC

CTCAGCAATTCAAGTCC-3’; F1 5’-GGTAGTGGTCTTTGGCATCC-3’ and R1 5’-CAAT

AACTGGGGAAAAGGAGC-3’. Two independent ES clones were then microinjected into

C57BL/6J blastocysts and transferred into (C57BL/6J X CBA/Ca)F1 pseudo-pregnant females

to generate chimeric mice. 27 chimeras were born, all males. Germline transmitting mice were

backcrossed into the C57BL/6J genetic background for more than 10 generations before being

used as experimental animals. Paternal transmission of the Igf2 floxed allele did not have any

impact on fetal and placental growth kinetics (S4G and S4H Fig). Homozygous Igf2fl/fl mice

were obtained by breeding heterozygous Igf2fl/+ parents.

Mouse strains

Targeted ES cells for the miR-483 knock-out [31] were generated and provided by Dr. Haydn

Prosser (Sanger Institute and International Knockout Mouse Consortium Project). Details on

the generation of the miR-483 knock-out mice (depicted in S7 Fig; Sekita et al., manuscript in

preparation) are available upon request. Rosa26YFP-stopfl/fl mice [26] were kindly provided by

Dr. Martin Turner (The Babraham Institute, Cambridge). H19DMDfl/fl mice [32] and Igf2rfl/fl

mice [52] were generously provided by Prof. Bass Hassan (University of Oxford). CMV-Cre

mice [53] were obtained from the Babraham Institute, Cambridge. This Cre recombinase is

expressed soon after fertilization and allows ubiquitous deletion of floxed alleles in all tissues,

including the germline [53]. Nkx3.2-knock-in-Cre mice [27] were kindly provided by Dr.

Warren Zimmer (Texas A&M University). Nkx3.2 expression occurs in the mesenchyme of

the developing pancreas, stomach and gut, as well as in the forming somites, but not in the

endoderm-derived cells of these organs. Nkx3.2 is expressed in the pancreatic mesenchyme as

early as E9.5 and, by E12.5, its expression becomes restricted to the mesenchymal area, which

will give rise to the splenic bud [27]. The Nkx3.2-knock-in-Cre, in which a Cre recombinase

cDNA cassette and a PGK-NeoR cassette were inserted in frame within exon 1 of Nkx3.2
(Bapx1) gene, faithfully replicates endogenous Nkx3.2 expression and directs Cre activity to

the foregut mesenchyme and skeletal somites starting at E9.5 [2,27]. We verified the pancreatic

cell-type specificity of Nkx3.2-Cre expression using the Rosa26YFP-stopfl/fl reporter mice and

demonstrated absence of recombinase activity in acinar cells, pancreatic endocrine cells, endo-

thelial cells or duct cells (Fig 1A) at postnatal day P2. Tek-Cre transgenic mice, in which Cre
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expression is controlled by the endothelial-specific receptor tyrosine kinase Tek (Tie2) promoter/

enhancer and therefore found uniformly in endothelial cells during embryogenesis (E7.5

onwards) and adulthood [30], were imported from the Jackson Laboratory (Maine, USA). Ptf1a-

knock-in-Cre mice, in which the protein-coding region of Ptf1a (exon 1 and 2) was replaced with

a Cre-cassette, express Cre in pancreatic ducts, exocrine and endocrine cells as early as E10.5 [28].

In newborn pups Ptf1a-Cre expression marks all acinar cells and roughly 95% of ductal and insu-

lin-producing cells, as well as 75% of glucagon-producing cells [28]. RIP-Cre mice, carry a Cre

transgene under the control of the rat Ins2 (insulin 2) promoter (RIP) that directs expression to

insulin-positive beta-cells from approximately E8.5–9 onwards [29]. Ptf1a-Cre and RIP-Cre
strains were obtained from Central Biomedical Services (CBS Transgenic Services, University of

Cambridge). All lines were bred into an inbred C57BL/6J line for>10 generations.

Mouse crosses and genotyping

Mice were fed standard chow diet with 9% of kcal from fat (SDS, Essex, UK) and housed with

a 12-h light/dark cycle in a temperature-controlled room (22˚C). For timed mating, the day of

detection of a vaginal plug was noted as embryonic day 1 (E1) and the day of birth was noted

as post-natal day 0 (P0). Mice were weaned at 3 weeks of age and ear notches were used for

visual identification and to collect tissue for PCR genotyping.

Mouse crosses used for each experiment are listed in S1 Table. Throughout the paper, Igf2+/

fl represents genotype of offspring that inherited the floxed allele from father; Igf2fl/+ represents

genotype of offspring that inherited the floxed allele from mother; Igf2+/+ represents genotype

of offspring with wild-type alleles at the Igf2 locus; Nkx3.2-Cre represents genotype of offspring

that are heterozygous Cre-carriers (Cre/+ or +/Cre); Igf2+/fl; Nkx3.2Cre/+ represents offspring with

mesenchymal Igf2 deletion on the paternal allele, having inherited the floxed allele from father

and the Cre allele from mother; Igf2fl/+; Nkx3.2+/Cre represents offspring with mesenchymal

Igf2 deletion on the maternal allele, having inherited the floxed allele from mother and the Cre

allele from father; H19DMDfl/+; Nkx3.2+/Cre represents offspring with mesenchymal H19DMD
deletion on the maternal allele, having inherited the floxed allele from mother and the Cre

allele from father. All strains were genotyped by standard PCR using DNA extracted from ear

biopsies (adult mice) or tail DNA (embryos or post-terminal). PCR was performed using the

Red Taq Ready PCR system (Sigma Aldrich) using primers described in S2 Table, followed by

separation of PCR amplicons by agarose gel electrophoresis.

Southern blotting screening of ES clones

gDNA were digested with EcoRI or SphI restriction enzymes and electrophoresed on 0.8% aga-

rose gels in 1×TBE buffer, alkaline blotted onto Hybond N+ membranes (Amersham), and

UV cross-linked (Stratalinker, Stratagene). Probes were obtained by PCR and radiolabeled (α-

32P-CTP). Hybridisation and washing of Southern blots was performed as described [54].

Membranes were exposed overnight to MS film (Kodak).

Northern blotting analysis of Igf2 mRNA

Total RNA (10 μg) extracted from E19 placenta and liver samples using RNeasy midi kits (Qia-

gen) according to manufacturer’s protocol, was separated in low-percentage formaldehyde

gels, blotted onto Nytran-plus membrane (Schleicher and Schuell), and UV cross-linked (Stra-

talinker, Stratagene). The RNA blots were hybridized with radiolabelled (α-32P-UTP) Igf2 and

Gapdh cDNA probes. We carried out hybridization and washing of northern blots as described

[55]. Transcript levels were quantified by PhosphorImager analysis (Molecular analyst soft-

ware, Biorad).
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Western blotting analyses

For Western blot analysis of IGF2, 5 μl serum samples collected at E19 were loaded into Bis-

Tris gels (NuPAGE Novex, Life technologies) and transferred to nitrocellulose membranes

(Invitrogen). 4 ng human recombinant IGF2 (292-G2-050, R&D Systems) was used as positive

control, and the Novex Sharp protein ladder (Life technologies) was used as marker. The

membranes were initially stained with Ponceau red (Invitrogen) and imaged with the Biorad

GelDoc system, the intensity of bands being used as internal control for protein loading. The

membranes were then blocked with 5% skimmed milk in TBS-T for 1 h at 4˚C, after which

were incubated overnight at 4˚C with goat anti-human IGF2 antibody (R&D systems AF-292)

diluted 1: 1,000 in TBS-T containing 0.3% skimmed milk. After 4x10 min washes with milliQ

water, the blots were incubated for 1h at room temperature with the secondary antibody

(1:2,000 rabbit anti-goat IgG coupled to HRP, SantaCruz) in TBS-T containing 3% skimmed

milk. Blots were washed 4x10 min with milliQ water, exposed to substrate (Clarity ECL West-

ern Blotting Substrate, Biorad) for 5 minutes and imaged with the Biorad GelDoc system.

Bands were quantified using the ImageLab software (Biorad), the output values being normal-

ized to the corresponding Ponceau red loading control values.

For Western blot analysis of AKT phosphorylation, acinar cell pellets were lysed in 30μl

RIPA containing protease and phosphatase inhibitors. Protein concentration was determined

by DC assay (Biorad) and 10μg/lane total cell lysates were electrophoresed through 4–12% Bis-

Tris NuPAGE gels with MOPS running buffer. Proteins were transferred to nitrocellulose by

iBlotII (Invitrogen) prior to being blocked for an hour in 3%BSA/TBST. Primary antibody to

pAKT (S473) (CST 9271), total AKT (CST 2920), or Beta-actin (CST 4967) was incubated

overnight at 4˚C. Membrane was washed 5 times before detection of bound antibody by

chemiluminescent signal associated with HRP-conjugated anti-rabbit or anti-mouse second-

ary antibody.

Pancreas immunostainings, imaging and stereology analysis

Pancreases were dissected under microscope (for embryonic and early post-natal analyses),

fixed in 4% paraformaldehyde in PBS overnight, dehydrated and then embedded in paraffin.

Paraffin blocks were cut at 5 μm thickness, sections were then deparaffinised, rehydrated,

stained and mounted with coverslips. For all stereological analyses, in order to obtain accurate

morphometric estimations without measuring more than once the same feature (e.g. pancre-

atic islands), sections spaced at 100 μm (P2) or 200 μm (pregnant females) were stained (6–8

sections/block for P2 and 20–24 sections/block for pregnant females). Conditions used for

antigen retrieval, blocking and combinations of primary and secondary antibodies used for

each staining are described in S3 Table. Counterstaining was performed with haematoxylin for

light microscopy stains or DAPI for fluorescent stains.

Light microscopy stained slides were imaged using the NanoZoomer whole slide scanner

(Hamamatsu). Fluorescent immunostainings were imaged with a LSM510 Meta confocal laser

scanning microscope and the ZEN 2009 software (Carl Zeiss, Germany) or scanned using an

Axio whole slide scanner. Whole slide scans of stained sections were analysed using the Visio-

pharm automated image quantification software (Visiopharm, Denmark) or HALO AI (Indica

Labs) to measure the area of positive cell-specific staining or to count individual nuclei. The

mass of each cell-type was calculated using the formula:

ðarea of cell� specific stain ðmm2ÞÞ � ðpancreas weight ðmgÞÞ
ðoverall tisue surface ðmm2ÞÞ

¼ mass of cell type of interest ðmgÞ
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mRNA in situ hybridization (ISH) for Igf2
ISH was performed as described [56], with minor modifications. Briefly, a region of 415 bp

spanning coding Igf2 exons 4–6 was amplified by PCR using primers: F: 5’-CACGCTTCAG

TTTGTCTGTTCG-3’ and R: 5’-GCTGGACATCTCCGAAGAGG-3’ and cDNA from whole

P2 pancreases as template. The PCR product was cloned into a pCR2.1-TOPO plasmid (Invi-

trogen) containing M13 primers and a T7 RNA polymerase transcription initiation site. Sense

(S) and antisense (AS) RNA probes were generated and labelled with Digoxigenin (DIG) by in
vitro reverse transcription, according to manufacturer’s instructions (Roche). Pancreases were

dissected in cold phosphate buffered saline (PBS) and fixed overnight in 4% paraformaldehyde

in 0.1% diethylpyrocarbonate (DEPC)-PBS at 4˚C. After rinsing in DEPC-PBS, tissues were

dehydrated and then embedded in paraffin in RNase-free conditions. Pancreas sections (7 μm

thick) mounted on polysine slides (VWR) were de-waxed, rehydrated in PBS, post-fixed in 4%

paraformaldehyde for 10 minutes, treated with proteinase K (30 μg/ml) for 10 min at room

temperature, acetylated for 10 minutes (acetic anhydride, 0.25%) and hybridized overnight at

65˚C in a humidified chamber with DIG-labeled probes diluted in hybridization buffer (con-

taining 200 mM sodium choride, 13 mM tris, 5 mM sodium phosphate monobasic, 5 mM

sodium phosphate dibasic, 5 mM EDTA, 50% formamide, 10% dextran sulfate, 1 mg/ml yeast

tRNA and 1× Denhardt’s [1% w/v bovine serum albumin, 1% w/v Ficoll, 1% w/v polyvinylpyr-

rolidone]). Two 65˚C post-hybridization washes (1× SSC, 50% formamide, 0.1% tween-20)

followed by two room temperature washes in 1× MABT (150 mM sodium chloride, 100 mM

maleic acid, 0.1% tween-20, pH7.5) were followed by 30 minutes RNAse treatment (400 mM

sodium chloride, 10 mM tris pH7.5, 5 mM EDTA, 20 μg/ml RNAse A). Sections were blocked

for 1 hour in 1×MABT, 2% blocking reagent (Roche), 20% heat inactivated goat serum and

then incubated overnight with anti-DIG antibody (Roche; 1:2,500 dilution) at 4˚C. After 4x20

min washes in 1× MABT, slides were rinsed in 1× NTMT (100 mM NaCl, 50 mM MgCl, 100

mM tris pH 9.5, 0.1% tween-20) and incubated with NBT/BCIP mix in NTMT buffer, accord-

ing to manufacturer’s instructions (Promega). Slides were counterstained with nuclear fast red

(Sigma), dehydrated and cleared in xylene and mounted in DPX mounting medium (Sigma).

Pictures were taken with a camera attached to a light microscope.

Fluorescence-activated cell sorting (FACS)

Mice were sacrificed by decapitation (embryos and P2 neonates) or cervical dislocation (P5

neonates and older). Then, pancreases were dissected and dissociated into single cells using

trypsin-EDTA (Sigma Aldrich) at 37˚C for 20 min. After one wash with ice-cold PBS, the cells

were passed through 70 μm strainers and single-cell suspensions were sorted into YFP-positive

and YFP-negative fractions using an Aria-Fusion cell sorter (BD Bioscience). Dead cells were

excluded based on forward and side scatter profiles and the uptake of 7AAD (7-Aminoactino-

mycin D dead cell stain, Life Technologies). Sorted YFP-positive and YFP-negative cells were

pelleted by centrifugation and flash frozen in liquid nitrogen, then stored at -80˚C until use.

Total RNA and microRNA extraction (pancreas and sorted cells)

‘Total RNA was extracted from whole pancreases, cells isolated by FACS or cultured cells

using the RNEasy Mini kit (Qiagen) or the RNEasy Micro kit (Qiagen), respectively, accord-

ing to manufacturer’s instructions, with additional removal of contaminating DNA using

QIASpin DNA eliminator columns. microRNA was extracted using the miRNeasy kit (Qia-

gen), according to manufacturer’s instructions with an additional step of DNaseI treatment

(Qiagen).
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Quantitative real-time PCR (qRT-PCR)

Concentration and integrity of total RNA was verified by NanoDrop (Thermo Scientific) and

agarose gel electrophoresis, respectively. For RNA extracted from whole pancreases, reverse

transcription was performed using the RevertAid RT Reverse Transcription Kit (Life technolo-

gies), according to manufacturer’s instructions. In the case of total RNA extracted from sorted

cells, cDNA was produced using the QuantiTect Whole Transcriptome Kit (Qiagen) following

manufacturer’s instructions. Primers used for qRT-PCR are listed in S4 Table. Annealing tem-

peratures were tested by gradient PCR using pancreas-cDNA as a template. qRT-PCR was per-

formed using the SYBR Green JumpStart Taq Ready Mix (Sigma Aldrich) on an ABI Prism

7900 system (Applied Biosystems). Gene expression levels were normalized to the housekeep-

ing gene Ppia (peptidylpropyl isomerase A or cyclophilin-A), which has previously been estab-

lished as a good housekeeping gene for pancreas gene expression studies [57] and is stably

expressed between various developmental time points. For microRNAs, reverse transcription

was performed using the TaqMan Micro RNA Reverse Transcription kit (Applied Byosys-

tems), according to manufacturer’s protocol. qRT-PCR was performed using TaqMan assays

(TM: 002560 for mmu-miR-483; TM: 001232 for snoRNA202 and TM: 001234 for

snoRNA234) and TaqMan 2x Universal PCR Master Mix (Applied Byosystems). Levels of

expression were calculated using the 2-ΔΔCt method [58].

Complementary DNA library preparation and RNA-seq analysis

Input RNA for genome-wide transcriptome analysis was verified for concentration and quality

using Agilent RNA Pico chips, according to manufacturer’s instructions. All RNA samples had

RNA integrity numbers (RIN) >7.5. Total RNA (2 ng) was whole-transcriptome amplified

using the Ovation RNA–seq System V2 (NuGEN). To prepare the RNA–seq libraries, the

amplified cDNA (2 μg per sample) was fragmented to 200 bp using a Bioruptor Sonicator

(Diagenode), and barcode ligation and end repair were performed using the Ovation Rapid

DR Library System (NuGEN). The barcoded libraries were combined and loaded onto an Illu-

mina HiSeq 2500 system for single-end 50-bp sequencing at the Genomics Core Facility, Cam-

bridge Institute, CRUK. The reads were aligned onto the mouse GRCm38 genome using

TopHat 2.0.11 [59]. Gene abundance and differential expression were determined with Cuf-

flinks 2.2.1 [60] and expressed in fragments per kilobase per million mapped reads (FPKM).

The cut off for expression was set at� 1 FPKM. Genes with a linear fold expression change

greater than 1.5 and a Benjamini–Hochberg false discovery rate<5% were considered differ-

entially expressed.

Functional annotation and enrichment analysis

DAVID (Database for Annotation, Visualization and Integrated Discovery; v6.8 http://david.

abcc.ncifcrf.gov/, accessed March 2017) was performed to assess whether there was enrich-

ment for genes implicated in particular biological processes within the differential expressed

gene lists identified by RNA-seq. Enriched gene ontology (GO) terms with an FDR< 0.05

were considered significant. These terms were then clustered semantically using REViGO

(Reduce and Visualize GO) [61], which removes redundancy. The results obtained by

REViGO were ordered according to log10 p values.

Whole pancreas lipase content and amylase measurements

For whole pancreas lipase measurements, frozen samples were removed from -80˚C and

thawed on ice. 100 μL TK lysis buffer with proteinase inhibitors (Calbiochem) was added to
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each pancreas and tissues were disrupted on ice with a homogenizer (Biospec Tissue Tearor).

Lysates were spun at 3,000 rpm for 15 min at 4˚C and supernatants were used for analysis.

Lipase levels were measured using a lipase activity assay (Dimension RXL, Siemens).

For amylase measurements, cultured acinar cells were lysed in 100 μL RIPA buffer, spun at

3,000 rpm for 15 min at 4˚C and the supernatants used for analysis. Amylase levels were mea-

sured in an autoanalyser (Siemens Dimension RXL) through a colorimetric reaction based on

the ability of amylase to hydrolyse the chromogenic substrate 2-chloro-4-nitrophenol linked

with maltotriose (CNPG3) into the coloured product 2-chloro-4-nitrophenol (CNP) plus

CNPG2, maltotriose G3 and glucose. The absorbance increase at 405 nm is proportional to the

amylase activity in the sample. Amylase levels (U/L) were normalized to the total protein content

determined by a BCA assay (Pierce BCA Protein Assay Kit, Thermo Fisher Scientific, 23225).

Primary pancreatic acinar and mesenchymal cell isolation and culture

Primary pancreatic cells were isolated as previously described [62] and adapted here to P2

samples. Briefly, pancreases from an entire P2 litter were micro-dissected under microscope

and sterile conditions and pooled in one tube containing HBSS, 0.25 mg/ml of trypsin inhibi-

tor and 1% Penicillin-Streptomycin mix. After rinsing, pancreases were digested for 20–30

min at 37˚C with a collagenase IA solution (HBSS containing 10mM HEPES, 200 U/ml of col-

lagenase IA, and 0.25 mg/ml trypsin inhibitor). The digestion was stopped by placing the sam-

ples on ice and addition of FBS (fetal bovine serum) for a 2.5% final concentration. After

additional washing steps, the cell suspension was passed through a 100 μm cell strainer, allow-

ing the passage of acini and mesenchymal cells, while retaining the non-digested fragments

and larger pancreatic islets. The cells were placed in the culture media (basal Waymouth’s

media containing 2.5% FBS, 1% Penicillin-Streptomycin mix, 0.25 mg/ml trypsin inhibitor,

and 25 ng/ml of recombinant human EGF) and plated into six-well plates pre-coated with

poly-L-lysine. After one hour incubation at 37˚C under 5% (v/v) CO2 atmosphere, the floating

acini were transferred to a new well, while the mesenchyme cells remained attached. The cells

were cultured under the above conditions for up to four days, with daily media changes.

Measurement of IGF2 secretion by primary mesenchymal and acinar cells

in vitro
The primary mesenchymal and acinar cells were isolated and cultured as described above until

reaching confluency. Media (1mL) was collected 24h post-confluency and freeze-dried using a

Christ Gamma 2–16 LSC Freeze dryer. Dry pellets were re-dissolved in 50 μl RIPA buffer and

IGF2 measured by ELISA (Mouse IGF-II DuoSet ELISA kit, R&D Systems–DY792) using an

assay adapted for the MesoScale Discovery electrochemiluminescence immunoassay platform

(MSD), as recently described [63].

In vitro IGF2 treatments

To assess the impact of exogenous IGF2 on intracellular signalling via AKT, freshly isolated

acinar cells were starved for two hours in basal Waymouth’s media, without FBS and EGF.

IGF2 treatments (with vehicle or 1 nM, 10 nM or 50 nM mouse recombinant IGF2) were per-

formed for 10 min at 37˚C under 5% (v/v) CO2 atmosphere, then the cells were immediately

placed on ice, washed two times in ice-cold PBS, pelleted and flash-frozen on dry-ice and

stored at -80˚C until analysed by Western blotting.

To assess the impact of exogenous IGF2 on amylase production by acinar cells, subconflu-

ent acinar cultures (48 hours after isolation) were placed in basal Waymouth’s media contain-

ing 1% Penicillin-Streptomycin mix and 0.25 mg/ml of trypsin inhibitor. FBS was replaced
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with Serum Replacement (Sigma Aldrich S0638) that does not contain any IGF2. The treated

cells received 50 ng/ml mouse recombinant IGF2 for 48 hours, with new media added every

day. After the treatment, cells were harvested and dissociated into single-cell suspension using

trypsin, counted with a Cedex XS Analyser (Roche), washed, pelleted and stored at -80˚C until

used for amylase measurement.

Oral glucose tolerance test

Conscious mice were used for an oral glucose tolerance test after 6 hours of fasting (from 8am

to 2pm). Blood samples (�5 μL) were taken from the tail vein immediately before administra-

tion of glucose by oral gavage (20% weight for volume, 2g/kg body weight based on average

body weights for each experimental group) and thereafter at the time points indicated, and

used for glucose measurements with a glucose meter (AlphaTRAK).

Statistical analysis

Numerical data used to generate all graphs presented in this study are shown in S5 Table. Sta-

tistical analysis was performed using GraphPad Prism 7 software. For two groups with up to 6

samples, statistical analysis was performed using Mann-Whitney or the Wilcoxon matched-

pairs signed rank test. For two groups with�6 samples, to determine whether the data was of

a Gaussian distribution, the Shapiro-Wilk test was first applied, followed by un-paired or

paired Student’s t-tests, as appropriate. Where more than two groups exposed to the same

treatment were analysed, 1-way ANOVA with Dunnett’s post-hoc or Friedman’s test with

Dunn’s correction tests were used, comparing every mean to a control mean. OGTT data was

analysed using two-way ANOVA with Sidak’s multiple comparison tests, using the time from

administration and the genotype as factors (two genotypes) or by repeated measures 1-way

ANOVA with Dunnett’s post hoc test for multiple comparisons against the controls (four

genotypes). The area under the curve (AUC) was calculated by the trapezoidal rule and used

for analyses by unpaired Student’s t tests (two genotypes) or by 1-way ANOVA with Dunnett’s

post-hoc tests (four genotypes). Unless stated otherwise, data is shown as average values and

error bars represent SEM or SD. N.S. p>0.05; � p�0.05; �� p�0.01, ��� p�0.001.

Supporting information

S1 Data. List of genes significantly enriched (fold change >1.5; FDR adjusted p value

<0.05) in mesenchyme and non-mesenchyme pancreatic cells at P2 in wild-type mice (Igf2

+/+; Rosa26YFP-stop+/fl; Nkx3.2Cre/+) and associated functional pathway analyses

(DAVID).

(XLSX)

S2 Data. List of DEGs (fold change >1.5; FDR adjusted p value <0.05) in non-mesenchy-

mal cells between Igf2+/fl; Rosa26YFP-stop+/fl; Nkx3.2Cre/+ knockouts and Igf2+/+;

Rosa26YFP-stop+/fl; Nkx3.2Cre/+ controls at P2, and associated functional pathway anal-

yses (DAVID).

(XLSX)

S3 Data. List of DEGs (fold change >1.5; FDR adjusted p value <0.05) in mesenchyme-

derived cells between Igf2+/fl; Rosa26YFP-stop+/fl; Nkx3.2Cre/+ knockouts and Igf2+/+;

Rosa26YFP-stop+/fl; Nkx3.2Cre/+ controls at P2, and associated functional pathway anal-

yses (DAVID).

(XLSX)

PLOS GENETICS Mesenchyme-derived IGF2 regulates pancreatic growth and function

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009069 October 15, 2020 23 / 31

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009069.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009069.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009069.s003
https://doi.org/10.1371/journal.pgen.1009069


S1 Fig. Assessment of efficiency of pancreas-expressing Cre lines using the Rosa26YFP-

stopfl/fl reporter mouse, at postnatal day 2 (P2). (A) Strategy used for sorting YFP+ and

YFP- cells by FACS. Top left panel: side scatter area (SSC-A) versus forward scatter area

(FSC-A) plotting was used to identify cells of interest (gated) based on granularity and size,

respectively. Top right panel: forward scatter width (FSC-W) versus forward scatter area

(FSC-A) was then used to exclude cell doublets. Bottom panels: gates used to discriminate YFP

+ (green and blue rectangles) versus YFP- cells (red rectangle), after exclusion of dead cells

(positive for 7-Aminoactinomycin D [7-AAD]) in cells isolated from pancreases of two

crosses: Rosa26YFP-stop+/fl; Nkx3.2Cre/+ that activates YFP in the mesenchyme-derived cells

(bottom left panel) and Rosa26YFP-stop+/fl; RIPCre/+ that activates YFP in the pancreatic beta-

cells (bottom right panel). (B) Igf2 mRNA expression measured by qRT-PCR in YFP+ cells col-

lected from offspring with the genotypes indicated. Expression data was normalized to Ppia
and shown as averages + SEM relative to levels measured in control (C) littermates, arbitrarily

set to 1. Percentage values indicate the level of Igf2 mRNA reduction relative to controls (n = 6

samples/genotype; �� p<0.01 by Mann-Whitney tests).

(TIF)

S2 Fig. Gene expression patterns of pancreatic mesenchyme-derived cells and non-mesen-

chyme cells identified by RNA-seq at postnatal day 2 (P2). (A) Volcano plot representing all

expressed transcripts in pancreatic mesenchyme and non-mesenchyme cells (purified by

FACS). For every transcript, the Log2 fold change between mesenchyme and non-mesen-

chyme cells was plotted against the -Log10 p value (FDR adjusted). Genes significantly

enriched, with a fold change >1.5 and FDR adjusted p value <0.05, in mesenchyme are

depicted as blue dots (n = 1,902 genes), in non-mesenchyme as red dots (n = 2,212), and those

not significantly enriched in either cell fraction are depicted as black dots (all genes are listed

in S1 Data). Selected genes of interest, such as known mesenchyme-expressed genes, signature

genes for the various non-mesenchyme cell-types and imprinted genes are grouped by colour.

(B) Biological validation by qRT-PCR of DEGs between mesenchyme-derived cell and non-

mesenchyme cells, identified by RNA-seq (n = 5–6 samples per group). Expression levels were

normalized to Ppia. Data is shown are average values; error bars represent SEM; �� p<0.01 by

Mann-Whitney tests. (C) Top scoring biological processes containing genes enriched in the

pancreatic non-mesenchyme cells as identified by DAVID functional annotation. The dotted

line in panel corresponds to a p value of 0.05. (D) Top 30 expressed genes with highest FPKM

values in pancreatic non-mesenchyme cells (average FPKM + SEM in mesenchyme and non-

mesenchyme cells with n = 4 per group) at P2. Note that all 30 genes are significantly enriched

in non-mesenchyme compared to mesenchyme-derived cells (>1.5 fold, FDR adjusted p value

<0.05).

(TIF)

S3 Fig. Expression of marker genes in mesenchyme-derived cells by RNA-seq. (A) Mesen-

chyme-derived cells exhibit high expression levels for known markers of pericytes, smooth

muscle cells, fibroblasts and myofibroblasts. Expression levels (shown as FPKM + SEM) were

calculated by analysing the RNA-seq data obtained in E13.5, E15.5 and E17.5 mesenchyme-

derived cells (n = 2 for each developmental time point) by Harari N et al. [3]. (B) Expression

levels in P2 mesenchyme-derived cells for the same markers genes shown in panel (A) (n = 4;

data shown as FPKM + SEM).

(TIF)

S4 Fig. Generation of Igf2 conditional knockout mice. (see also Materials and Methods for

further details). (A) Targeting strategy to generate an Igf2 allele with coding exons 4 to 6
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flanked by loxP sites (not drawn to scale). Blue boxes–exons; P0-P3 –alternative promoters;

green triangles–loxP sites; neo–neomycin cassette; WT–wild-type; T–targeting (construct); E–

EcoRI restriction sites; 5’, Int, 3’: location of 5’, internal and 3’ Southern blotting probes,

respectively (B) Southern blot confirmation of homologous recombination between targeting

vector and endogenous Igf2 sequences in genomic ES cell DNA, digested with EcoRI and

hybridized with 5’, Int or 3’ probes. Diagnostic molecular weights (kb) are indicated in each

panel. T and WT–targeted and wild-type clones, respectively. (C) Screening strategy for loxP

recombination events (not drawn to scale). Correctly targeted ES clones (as shown in (B)) that

are transiently exposed to Cre recombinase in vitro will undergo three possible independent

recombination events involving the loxP sites, which can be discriminated by PCR and South-

ern blotting. F0, F1, R1 –PCR screening primers; S–SphI restriction sites; Int–Internal South-

ern probe (D) Five 96-well plates containing targeted ES cells transfected with Cre

recombinase were screened by F1+R1 primer PCR (panel i) or F0+R1 primer PCR (panel ii).

F1+R1 PCR products of 221 bp, 1.4 kb and 328 bp are diagnostic of the wild-type allele, neo-

mycin cassette, and neomycin cassette deletion, respectively (panel i). F0+R1 PCR products of

520 bp are diagnostic of a deletion that includes the neomycin cassette and exon4-6 region (in

panel (ii)). Since all clones that had deletion of the neomycin cassette (i.e. 328 bp) also had

cells with deletion of exon4-6 region (520 bp), the clone indicated with a star in panel (i) was

subsequently subcloned for selection of cells with neomycin cassette excision events only. (E)

Representative ES subclones (starred) with deletion of the neomycin cassette only (i.e. 328 bp

in panel (i) but absence of 520 bp PCR product in panel ii). (F) Southern blot confirmation of

deletion of the neomycin cassette in ES subclones identified in (E). DNA was digested with

SphI and hybridized with the internal probe: 6.4 kb–wild-type allele (WT); 3.9 kb–floxed allele

(fl), resulting from Cre-induced deletion of the neomycin cassette. (G) PCR genotyping of

Igf2+/fl mice was performed using primers F and RW flanking the 5’ loxP site (primer

sequences are shown in S2 Table). A representative example of tail DNA PCR is shown for

mice carrying one floxed Igf2 allele (lane 1) wild-type littermate (lane 2); lane 3 –no template

PCR control; lane 4–100 bp DNA ladder. (H) Carriers of an Igf2 floxed allele that was inherited

paternally show identical embryonic and placental weights as littermate controls (E12: n = 8

wild-type and n = 3 floxed; E14: n = 16 wild-type and n = 7 floxed; E16 n = 12 wild-type and

n = 10 floxed; E19: n = 29 wild-type and n = 24 floxed). Data is shown as average weight; error

bars represent standard deviation (SD).

(TIF)

S5 Fig. CMV-Cre-mediated deletion of the Igf2 floxed allele in vivo. (A) PCR strategy to

identify deletion events at DNA level. PCR products obtained in a tri-primer (F+RW+RD)

PCR are diagnostic of the wild-type allele (WT: 324bp), floxed allele (fl: 449 bp) and deleted

allele (Del: 384bp). Representative tail DNA PCR examples are shown in (B) for Igf2+/fl mice

that carry floxed and wild-type alleles (lane 1), Igf2+/fl; CMVCre/+ mice carrying deleted and

wild-type alleles (lane 2), Igf2+/+ control littermates with wild-type alleles only. (C) to (G)

CMV-Cre mediated deletion of the Igf2 floxed allele in vivo. Heterozygous floxed Igf2 males

were mated with females homozygous for CMV-Cre (active in all cells of embryos and placen-

tae), and offspring analysed for levels of Igf2 deletion by northern blotting (C), Western blot-

ting (D) and (E), and growth curves from E14 to E19 of gestation ((F) and (G)). (C) Northern

blot analysis of Igf2 mRNA levels, showing wild-type levels of expression in controls (Igf2+/+;

CMVCre/+) in both placenta (PL) and liver (LV) at E19, and absence of all Igf2 transcripts upon

CMV-Cre mediated deletion of the paternally inherited floxed allele (Igf2+/fl; CMVCre/+).

Gapdh–internal control for RNA loading. (D) Western blotting analysis of the mature form of

IGF2 in serum samples collected from E19 controls (C: Igf2+/+; CMVCre/+) and mutant (KO:
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Igf2+/fl; CMVCre/+) embryos. Normalisation of IGF2 expression across samples was performed

against Ponceau-stained protein band (arrow), and the relative quantification of IGF2 levels

for the two genotypes is shown in (E). Data is shown as average values; error bars represent

SEM; �� p<0.01 by Mann-Whitney test. (F) and (G) Mice with a CMV-Cre mediated deletion

of the paternally inherited Igf2 floxed allele (Igf2+/fl; CMVCre/+) show a similar embryonic (F)

and placenta (G) growth phenotype to Igf2 null mice, i.e. ~ half of the weight of littermate con-

trols (Igf2+/+; CMVCre/+) at the end of gestation (E14: n = 3 litters; E16: n = 9 litters; E19: n = 4

litters). Data is shown as average values; error bars represent SD; � p<0.05; �� p<0.01; ���

p<0.001 using paired student t tests.

(TIF)

S6 Fig. Inheritance of Nkx3.2-Cre or Igf2 floxed alleles, or deletion of maternal Igf2 allele

do not affect total body or pancreas weights at postnatal day 2 (P2). (A) Body and pancreas

weights in offspring obtained from a cross between heterozygous Nkx3.2-Cre females and het-

erozygous Igf2 floxed males. (B) Body and pancreas weights in offspring obtained from a cross

between heterozygous Igf2 floxed females and heterozygous Nkx3.2-Cre males. (C) Igf2 mRNA

levels measured by qRT-PCR in pancreases with a deletion of the maternal Igf2 allele in the

mesenchyme. Data is normalized to Ppia and shown relative to average Igf2 levels in controls

(C–Igf2+/+; Rosa26YFP-stopfl/+), set to 1. Data is shown as averages or individual values; error

bars represent SEM. Numbers shown indicate numbers of animals for each genotype. Data

was analysed using one-way ANOVA with Dunnett’s multiple comparison test against the

control group for panels (A) and (B) and by unpaired Student’s t test in panel (C); N.S.–non-

significant; ��� p<0.001.

(TIF)

S7 Fig. Paternally inherited miR-483 deletion does not lead to reduction in pancreas size.

(A) Gene targeting strategy to delete the intronic Igf2 miR-483. In brief, a targeting vector was

used to replace the miR-483 sequence in intron 4 of the Igf2 gene with a PGKPuroΔtk selection

cassette in ES cells. Removal of the selection marker was achieved by Cre-recombination

between loxP sites. Germline transmitting miR-483 KO chimeric mice were generated by ES

cell injection into blastocysts (Sekita, Prosser, Zvetkova et al., manuscript in preparation).

(WT–wild-type allele, T–targeted allele, KO–knock-out allele, P0 –P3 are alternative Igf2 pro-

moters, Ex4 –Ex6 are the Igf2 coding exons, F and R indicate the position of the forward and

reverse primers used for PCR genotyping). (B) miR-483 and Igf2 expression levels measured

by qRT-PCR in postnatal day 2 (P2) whole pancreas from offspring of heterozygous miR-483
KO males mated with wild-type females and shown relative (%) to littermate controls (C–miR-
483+/+) set to 1. Expression data was normalized to snoR-202 and snoR-234 (for miR-483) and

to Ppia (for Igf2) and is shown as average + SEM (n = 10 C and n = 10 KO). N.S.–non-signifi-

cant; ��� p<0.001 by unpaired Student’s t test. (C) Total body weights and pancreas weights.

Data is shown as averages or individual values (n = 33 C and n = 24 KO); error bars represent

SEM; N.S.–non-significant differences by two-way ANOVA using genotype and litter as fac-

tors.

(TIF)

S8 Fig. Deletion of paternal Igf2 in pancreatic mesenchyme leads to reduced body and pan-

creas weights at weaning (P21). (A) Total pancreas weights and (B) body weights in offspring

obtained from a cross between heterozygous Nkx3.2-Cre females and Igf2 floxed males. The

value within brackets in (A) shows % pancreas weight reduction after normalization to body

weight. Data is shown as individual values or averages; error bars represent SEM. Numbers of

mice for each genotype are shown. Data was analysed using one-way ANOVA with Dunnett’s
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multiple comparison tests against the control group (C–Igf2+/+; Rosa26YFP-stop+/fl); N.S.–

non-significant; � p<0.05; ��� p<0.001.

(TIF)

S1 Table. Mouse strains and crosses.

(DOCX)

S2 Table. Primers used for genotyping by PCR.

(DOCX)

S3 Table. Conditions used for pancreas immunostaining.

(DOCX)

S4 Table. Primers/Assays used for qRT-PCR.

(DOCX)

S5 Table. Numerical data underlying graphs shown in this study.

(XLSX)
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