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Abstract 

The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has 

occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread 

of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to 

be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be 

driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the 

wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be 

highly informative.  In this chapter we discuss the evolution of B. pertussis, including how vaccination 

is changing the circulating B. pertussis population at the gene-level, and how new sequencing 

technologies are revealing previously unknown levels of inter- and intra-strain variation at the 

genome-level.  
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MLST – multilocus sequence typing 
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ptx – Pertussis toxin 
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SNP – single nucleotide polymorphism 
WCV – whole-cell vaccine 
WGS – whole genome sequencing 

1. The ongoing problem of Bordetella pertussis 

Whooping cough, the infectious respiratory disease caused by the bacterium Bordetella pertussis, has 

been resurgent in many countries for the past two decades. This resurgence comes in spite of a global 

vaccination programme, with 90% of the target population receiving a single dose of pertussis-

containing vaccine, and 85% receiving three doses (WHO 2018). In addition, there has been a shift in 

the epidemiological profile of the disease: whereas once most cases were reported in infants and 

unvaccinated children, the resurgence is also affecting vaccinated children, adolescents and adults, 

Figure 1 (Strebel et al. 2001; Clark 2014). Data from the Centers for Disease Control, for example, show 

Figure 1: Reported incidence of whooping cough per 100,000 in the USA, 1990-2017, showing increase in all age brackets. 
Data source: CDC National notifiable diseases surveillance reports (Centers for Disease Control 2019) 
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that from 1990-1997, the mean incidence of whooping cough per year in 11-19 year-olds was 2.54 per 

100,000 people, whereas from 2010-2017, it was 20.43 (Centers for Disease Control 2019). 

The original vaccination programme, introduced in the 1940s and 1950s, used a whole-cell vaccine 

(WCV). Initially, cases of the disease appeared to drop significantly. Due to perceived reactogenicity 

of the WCV (now largely discredited), it was replaced in many countries throughout the 1990s and 

early 2000s with an acellular vaccine (ACV) (for example: Cherry 1990, 1992, 1996; Cherry et al. 1993; 

Blumberg et al. 1993; Moore et al. 2004). The acellular vaccine contains one to five B. pertussis 

antigens, including Pertussis toxin (ptx), pertactin (prn), filamentous haemagglutinin (FHA) and the 

fimbrial proteins Fim2 and Fim3. These days, most developed countries use the ACV, although many 

developing countries continue to use the WCV. The recent use of the ACV has been strongly implicated 

in whooping cough’s resurgence. However, concerns were raised about waning immunity conveyed 

by the WCV beginning in the early 1990s and, in many countries, the resurgence does seem to pre-

date the switch to the ACV (De Serres et al. 1995; Cherry 1996; de Melker et al. 1997).  

Three main potential causes are thought to have contributed to the recent observed increase in 

whooping cough cases: increased awareness of the disease coupled with improved diagnosis due to a 

switch from culture-based to PCR- and serology-based techniques; waning immunity, particularly that 

conveyed by the ACV compared to the WCV; and genetic variations in circulating B. pertussis strains, 

away from the vaccine strains (Sealey et al. 2015; Clark 2014; Ausiello and Cassone 2014). Here we 

focus on the latter from two different but highly interrelated perspectives: variation at the gene-level, 

and variation at the genome-level, with particular consideration of how recent developments in 

genomic research have contributed to our understanding of evolution and variation in a species which 

traditionally has been described as highly monomorphic (for example: Bart et al. 2010; Mooi 2010).  
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2. The speciation of Bordetella pertussis 

The study of the bordetellae has focussed largely on the three classical, pathogenic, Bordetella species: 

B. bronchiseptica, B. pertussis and B. parapertussis. However, the Bordetella genus contains many 

additional species which have been isolated from extremely diverse environments, including marine 

sponges, bioreactors, nitrifying sludge and mural paintings in ancient tombs (Wang et al. 2007; Bianchi 

et al. 2005; Sun et al. 2019; Tazato et al. 2015). Using previously published 16S sequence data derived 

from many Bordetella species to create a phylogenetic tree, Hamidou Soumana et al. (2017) 

demonstrated that eight out of the ten clades contained soil-dwelling bordetellae; the permeation of 

the environmental phenotype throughout the phylogenetic tree hints at a soil-based origin for the 

Bordetella genus.  

Key evolutionary milestones within the genus involve species that are capable of both environmental 

and pathogenic lifestyles, such as the key ancestor to the classical Bordetella species, a B. 

bronchiseptica-like bacterium. Multilocus sequence typing (MLST) studies of B. bronchiseptica have 

established two distinct complexes of isolates, complex I and IV. The majority of strains isolated from 

humans originate from Complex IV (Diavatopoulos et al. 2005; Park et al. 2012). Using the much higher 

discriminatory power of next generation sequencing (NGS) data, it has been demonstrated that B. 

pertussis and B. parapertussis evolved from different complexes, with B. parapertussis sharing a more 

recent ancestor with Complex I and B. pertussis with Complex IV (Linz et al. 2016).  

Table 1: Characteristics of all classical Bordetella closed genomes available on RefSeq, March 2019 

Characteristic B. pertussis B. parapertussis B. bronchiseptica 

Number of closed genomes 421 18 19 

Genome size / Mb 1 4.11 (4.04 – 4.39) 4.78 (4.77 – 4.90) 5.21 (5.08 – 5.34) 

Number of predicted genes 1 3,979 (3,856 – 4,239) 4,501 (4,490 – 4,574) 4,911 (4,774 – 5,090) 

Number of proteins 1 3,615 (3,425 – 3,866) 4,166 (4,157 – 4,184) 4,804 (4,663 – 4,993) 

G+C % 1 67.7 (67.7 – 67.8) 68.1 (67.8 – 68.1) 68.2 (68.1-68.4) 

IS 481 1 256 (234 - 273) - 1 (0-3) 

IS 1001 1 - 22 (22-28) 1 (0-1) 

IS 1002 1 8 (5 – 10) 9 (0-9) 0 (0-5) 

IS 1663 1 17 (16 – 24) - 2 (0-14) 
1 Figures shown are mean and (range) 
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Despite their apparently different evolutionary trajectories, B. pertussis and B. parapertussis cause 

remarkably similar pathologies in humans. In an example of convergent evolution, the genomes of 

both species have evolved primarily through genome reduction, mediated through homologous 

recombination of insertion sequences (IS). As seen in table 1, the genome of B. bronchiseptica contains 

very few IS elements; in fact, the reference strain RB50 was originally believed to contain no IS 

elements at all (Parkhill et al. 2003; Preston et al. 2004). In contrast, B. parapertussis genomes contain 

around 30 IS elements, usually 22 copies of IS 1001 and 9 copies of IS 1002. The B. pertussis genome 

contains the most IS elements:  up to ten copies of IS 1002, around 20 copies of IS 1663, and over 200 

copies of IS 481. The appearance and expansion of these IS elements is thought to have led to the 

speciation of B. pertussis and, separately, B. parapertussis, from their B. bronchiseptica-like ancestors 

(Parkhill et al. 2003; Preston et al. 2004; Diavatopoulos et al. 2005). 

Genome reduction was key in the speciation of B. pertussis. The significant, IS-mediated, reduction in 

genome size of the B. pertussis genome (around 4.1 Mb) compared to the B. bronchiseptica genome 

(around 5.3 Mb) has led to a streamlined genome, depleted of many metabolic, membrane transport, 

surface structure synthesis and gene expression regulatory genes when compared to B. bronchiseptica 

genomes (Parkhill et al. 2003). Comparative genomic studies between B. bronchiseptica and B. 

pertussis reveal that the latter has around 1200 fewer genes (Parkhill et al. 2003; Linz et al. 2016). In 

addition, insertions of IS elements into genes which are functional in B. bronchiseptica has resulted in 

the existence of over 350 pseudogenes in B. pertussis, compared to only around 20 in B. 

bronchiseptica. This sculpting of the B. pertussis genome via IS-mediated homologous recombination 

has produced a highly specialised pathogenic bacterium which is niche-restricted to the human 

nasopharynx. Traditionally, B. pertussis has been described as a monomorphic species (for example: 

Mooi 2010; Bart et al. 2010); however, since the advent of whole genome sequencing, genomics has 

been revealing that the bacterium may be less clonal than previously thought, with the introduction 

of vaccination and continued homologous recombination between IS elements driving gene- and 

genome-level variations respectively. 
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3. Vaccination has accelerated B. pertussis gene-level evolution 

3.1 Changes to circulating alleles 

Over the last several decades, allele-typing of selected genes has shown a number of similar trends, 

characterised largely by the drift of genes away from the vaccine alleles (for example: Mooi et al. 1998; 

van der Zee et al. 1996; Mooi et al. 2001). One well-reviewed example involves pertussis toxin. Prior 

to the 1990s, the predominant ptx promoter allele was ptxP1. A new allele, ptxP3, was first observed 

in 1988 (Bart et al. 2010). In ptxP3, a SNP in the binding site for ptx’s transcriptional regulator, BvgA, 

appears to increase the binding affinity between the promotor and regulator, thus increasing 

transcription and causing ptxP3-carrying strains to produce more ptx. The expression of other proteins 

involved in complement resistance is also altered and, together, these changes increase the 

transmissibility and severity of the disease caused by ptxP3-carrying strains (Mooi et al. 2009; Bart et 

al. 2010; King et al. 2013; de Gouw et al. 2014).  This new allele spread rapidly throughout the 1990s, 

and ptxP3 is now present in greater than 90% of recent isolates (Lam et al. 2012; Bart et al. 2010). A 

thorough screen of 343 strains representing 19 countries and six continents, spanning 90 years of B. 

pertussis isolation, showed that similarly rapid selective sweeps have also occurred in other antigen-

related genes, including ptxA, prn, and fim3 (Bart et al. 2014a) . 

In addition, analysis of 100 strains isolated during a 2012 whooping cough outbreak in the UK, after 

the introduction of the ACV, showed that the evolution of the antigens included in the ACV is occurring 

more rapidly than that of the surface proteins not included in the ACV (Sealey et al. 2015). Importantly, 

this analysis also showed that numerous different strains were circulating during the outbreak, rather 

than one particularly virulent strain or allelic profile being responsible. The same was also true for 

strains circulating during outbreaks in the USA, in California in 2010, and in Vermont and Washington 

in 2012 (Bowden et al. 2014; Bowden et al. 2016).  This suggests that the strains circulating during 

outbreaks tend to be the same as those that circulate during non-outbreak periods, but that some 

unknown trigger causes an increase in whooping cough cases in regular four-yearly cycles.  
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Supporting the idea that the recent allelic changes we are seeing in B. pertussis are, in part, a response 

to the introduction of vaccination, Xu et al. (2015) and Du et al. (2016) showed that, in countries where 

vaccine uptake has been lower or delayed, the rate of change to the allelic profile of circulating strains 

has also been delayed. In the Philippines, for example, where the WCV is still in use, prn2 has yet to 

appear, despite being the allele most frequently seen in ACV-adopting countries (Galit et al. 2015).  

3.2 The proliferation of antigen-deficient strains 

Another gene-level phenomenon which has been observed recently is the emergence of strains 

deficient in one or more of the antigens used in the ACV. During the pre-ACV era, antigen-deficient 

strains were occasionally isolated, albeit at very low frequencies. Individual strains with mutations 

(deletion, frameshift, and premature stop codons) which resulted in the non-expression of pertactin 

were, for example, isolated in Europe, North America and Japan in the 1990s (Mastrantonio et al. 

1999; Weigand et al. 2018; Miyaji et al. 2013). The landmark study by Bart et al. (2014a), in which all 

but around 20 strains were isolated prior to 2007, did not identify any strains which were prn-deficient 

(although one, BP310, has subsequently been resequenced by Zomer et al. (2018) and is likely to be 

deficient). Since the mid-2000s, however, the number of prn-deficient strains being isolated globally 

has increased rapidly. A study of Australian isolates from 2008-2012 showed an increase from 5% prn-

deficient strains in 2008 to 78% prn-deficient strains in 2012 (Lam et al. 2014). Pertactin-deficiency 

appears to be polyclonal, affecting both dominant prn alleles, prn1 and prn2, and arising through 

several different mechanisms including insertions of IS 481, large deletions, and SNPs, with no single 

predominant causative mutation (Hegerle et al. 2012; Queenan et al. 2013; Barkoff et al. 2019).  

As with changes to allelic profiles, countries with different vaccination strategies appear to be 

differently affected by the proliferation of antigen-deficiency. A longitudinal study of prn-deficiency 

in European countries between 1998 and 2015, figure 2, showed that the number of prn-deficient 

strains is increasing in all screened countries but, the earlier a country introduced the ACV, the higher 

the percentage of strains currently found to be deficient (Barkoff et al. 2019). The rapid recent 
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increase in prn-deficiency suggests that, although the deficiency may have always occurred in some 

strains by chance, it has been strongly selected for by the ACV compared to the WCV. Further 

supporting the idea of ACV-mediated selection pressure is the sustained decrease of prn-deficient 

strains circulating in Japan since pertactin was removed from the Japanese ACV in 2012 (Hiramatsu et 

al. 2017).  

A smaller number of strains deficient in other antigens included in the ACV have also been identified.   

Bart et al. (2015) and Weigand et al. (2018) identified several geographically independent recent 

strains which were unable to produce FHA; the same strains were often also prn-deficient. In addition, 

a handful of strains have been isolated globally which are deficient in both prn and ptx (Bouchez et al. 

2009; Williams et al. 2016; Weigand et al. 2018). However, both FHA and Pertussis toxin are thought 

to play more vital roles in whooping cough disease development than pertactin (Carbonetti 2010; 

Henderson et al. 2012; Serra et al. 2011). Hence, although occasional strains may develop deficiency 

in these antigens, the reduced ability of these deficient strains to survive in the host and cause disease  

Figure 2: Correlation between the introduction of a primary acellular pertussis vaccine containing pertactin (PRN) in a 
European country and the proportion of PRN-deficient isolates found in the study, 2012–2015. Reproduced with 
permission from Barkoff et al. (2019) 
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and may mean that this kind of antigen deficiency is unlikely to proliferate in the same way as prn-

deficiency.  

4.  Recent sequencing advances highlight genome-level variation 

4.1 The limitations of short-read sequencing 

Whilst the wide availability of whole genome sequencing throughout the 2000s enabled a variety of 

high-throughput strain screens, the highly repetitive nature of the B. pertussis genome has made the 

assembly of single-contig B. pertussis genome sequences difficult. Genome sequencing requires an 

organism’s genome to be sheared into smaller fragments prior to sequencing; one of the goals of 

genomics is to fully re-assemble these fragments back into their original order. The goal when 

sequencing an organism with a single chromosome, like B. pertussis, would therefore be to re-

assemble the sequenced fragments into a single, closed genome sequence. IS 481, however, together 

with the smaller number of copies of other repeated regions, such as IS 1002, IS 1663 and the rRNA 

operon, has confounded attempts to assemble closed B. pertussis genomes using short-read 

sequencing technologies, which sequence fragments shorter than the repeated section. The hundreds 

of B. pertussis genomes assembled using short-read sequencing alone have tended to consist of 

several hundred fragments, or “contigs”: ostensibly one per repeat in the genome. Thus, the majority 

of high-throughput screens throughout the 2000s were focussed on the gene-level differences 

between strains already discussed, rather than comparisons on a whole genome-level. 

The presence of so many IS elements, however, means that assembly of closed B. pertussis genomes 

could be particularly informative: IS elements are able to move around the genome through 

homologous recombination, potentially causing genome-level structural changes which may be 

discernible only through single-contig assemblies (Bentley et al. 2008; Siguier et al. 2014). Despite the 

discovery that most whooping cough outbreaks tend to be polyclonal in nature, B. pertussis remains 

a relatively clonal species, with a low SNP rate compared to many other bacteria. In other species, in 

addition to gene-level variations, differences at a whole-genome level are known to contribute to 



10 
 

altered gene expression and phenotypic diversity (Darch et al. 2014; Sousa et al. 1997). IS-mediated 

rearrangement may affect gene regulation and/or expression in B. pertussis by a number of 

mechanisms, including IS 481’s inwards and outwards-facing promoters, as well as changing the 

distance of genes from the origin of replication (Amman et al. 2018). Limited evidence has already 

shown that certain genome-level differences can affect phenotype in B. pertussis in this way  (Brinig 

et al. 2006).  

The speciation of B. pertussis from B. bronchiseptica via IS element-mediated homologous 

recombination resulted in a variety of genomic arrangement differences between the two species 

alongside the reduction in genome size, and it is likely that IS-mediated genomic rearrangement in B. 

pertussis is an ongoing process (Parkhill et al. 2003). Indeed, prior to the advent of long-read 

sequencing, pulsed-field gel electrophoresis (PFGE) was one of the few methods able to discriminate 

between highly clonal B. pertussis strains: isolate screens using PFGE indicated that strains which 

seemed otherwise alike could vary significantly in terms of PFGE type (van Gent et al. 2015; Bisgard et 

al. 2001; Advani et al. 2004; Advani et al. 2013). Although the existence of numerous PFGE types was 

widely seen, however, it could not be confirmed how different PFGE types arose; they could represent 

different genomic arrangements, but could also have arisen due to mutagenesis at PFGE restriction 

sites, for example.  

Thus, closed B. pertussis genome sequences may validate and further reveal genome-level differences 

between strains which otherwise appear to have highly similar or identical DNA content. The recent 

availability of long-read sequencing techniques, which can produce sequencing reads longer than 

1,000 bp, has therefore revolutionised our ability to discover and investigate genome-level variations 

in B. pertussis.   

4.2 Long-read sequencing shows extensive inter-strain genome rearrangement 

The first study to take advantage of long reads utilised Pacific Biosciences (PacBio) sequencing to 

produce closed, fully annotated, genomes for two B. pertussis strains: BP1917 and BP1920 (Bart et al. 
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2014b). The arrangement of these two strains differed significantly, with three large inversions and a 

variety of deletion and/or insertion events between the pair, figure 3. Having proven the ability of 

long reads to close the genomes of BP1917 and BP1920, Bart et al. (2015) next sequenced 11 B. 

pertussis strains which represented the pandemic ptxP3 lineage, again using PacBio sequencing to 

produce 10 kb-long reads. This cohort, which also included several strains deficient in prn and/or FHA, 

were characteristically similar in terms of SNPs but again showed significant differences in genome 

arrangement. As is common for a developing technology, the cost of PacBio sequencing has rapidly 

decreased. Thus, higher-throughput strain screens have become increasingly feasible. Figure 4 shows 

the dramatic increase in closed genome sequences for the classical Bordetella species available from 

the NCBI’s RefSeq database since 2014. Bowden et al. (2016) conducted the first whooping cough 

outbreak screen using long-read sequencing alongside short-read sequencing in hybrid, sequencing 

31 strains which had circulated during US whooping cough outbreaks in 2010 and 2012. The hybrid 

approach has been shown to improve the accuracy of assemblies produced using long-read 

sequencing, which still have an intrinsically higher error rate than short-read-only assemblies, 

particularly in homopolymeric tracts (Au et al. 2012; Koren et al. 2012). In the 31 genomes studied, 21 

different arrangement profiles were observed; most consisted of inversions around the origin of 

replication. Bowden et al. also validated the arrangements using whole genome optical mapping and 

found that, in all cases, the boundaries between rearranged sections were composed of a repeated 

element: an insertion sequence, or the rRNA operon. The vast majority of the boundaries were IS 481 

Figure 3: Different arrangements of the B. pertussis genome seen in BP1917 and BP1920. Three large sections of the genome 
(1, 2, and 3) are inverted in BP1920, as shown by their appearance on the complementary strand when the two whole 
genome sequences are aligned using progressiveMauve (Darling et al. 2010). The Genbank accession numbers for the 
genome sequences produced by Bart et al. (2014b) for BP1917 and BP1920 are CP009751 and CP009752, respectively.   
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(89%), whilst the rest were composed of an rRNA operon, IS 1002 or a combination of IS 1002 and IS 

481 together. 

The most thorough investigation of B. pertussis genomic rearrangement to date also used a hybrid 

assembly strategy, combining PacBio long reads with Illumina short reads to close the genomes of 257 

strains, dating from 1939 to 2014 (Weigand et al. 2017). When clustered based on their arrangement 

profiles, most isolates clustered according to allelic profile; for example, most ptxP1 strains shared 

similar arrangements with other ptxP1 strains. This clustering indicates that most structures are 

relatively stable, as supported by a clinical isolate which showed the same structure before and after 

11 serial passages. Furthermore, these findings suggest that lineages are conserved not just in terms 

of SNPs, but also in genomic arrangement. Interestingly, Weigand et al. note that, on average, only 

half of their predicted IS 481 target sites are occupied in any given genome, suggesting a potential for 

further IS-mediated structural changes in future generations, assuming these sites are not non-

permissive. 

Figure 4: Increase in numbers of closed classical Bordetellae genome sequences (available on RefSeq) since the commercial 
introduction of long-read sequencing technologies 
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5. How else might B. pertussis generate diversity through genome-level 

variation? 

The primary metric commonly used to assess diversity of bacterial species is SNPs. However, B. 

pertussis is a textbook example of a clonal bacterial pathogen: variation, when judged by SNPs alone, 

is extremely limited, even taking into account the accelerated mutation of B. pertussis genes since the 

introduction of vaccination. Bart et al. (2010) estimated the mutation rate between B. pertussis 

isolates to be 1 SNP per 8,675 bases, compared to, for example, 1 SNP per 3,000 bases in 

Mycobacterium tuberculosis, and 1 SNP per 6,700 bases in Escherichia coli O157:H7 (Fleischmann et 

al. 2002; Gutacker et al. 2002; Zhang et al. 2006). Diversity within a species is vital for its survival, in 

order to drive adaptation; this is particularly true for pathogens, which are under pressure from the 

immune system (Mooi 2010). Therefore, a prominent question in B. pertussis genomics is: despite 

limited SNP diversity, how does B. pertussis generate diversity? The large numbers of closed genomes 

assembled using long-read sequencing have proven that rearrangements are a rich source of genome-

level diversity, but can genomics also reveal other types of genome-level variation?  

5.1 Harnessing deletion as a driver of diversity 

King et al. (2010) analysed the size of B. pertussis genomes of strains isolated over a 60-year period, 

demonstrating that genome streamlining has been an ongoing process, with recently isolated strains 

having smaller genomes and higher numbers of pseudogenes. Thus, B. pertussis is described as a 

species which is still undergoing genome reduction. Like genomic rearrangement, reduction is driven 

primarily by homologous recombination between insertion sequences. The large numbers of 

homologous IS elements in B. pertussis therefore produce a fertile mutational landscape capable of 

the generation of diversity.   

Many bacterial species also generate diversity through the gain of genes, often by horizontal gene 

transfer (HGT), resulting in fluid gene content of the population, enabling the population to effectively 

respond to evolutionary bottlenecks that may arise over long or short timescales. In B. pertussis, 
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however, HGT appears to occur very rarely (Linz et al. 2016). Gene content of a species or genus is 

often analysed using a “pangenome” approach, which consists of analysing which genes are 

consistently present (the core genome) in the population, and which genes are variably present (the 

accessory genome) (reviewed in Medini et al. 2005; Rouli et al. 2015). A number of studies have 

undertaken this analysis in B. pertussis using either comparative genomic hybridization (CGH) (for 

example: Zhang et al. 2006; Caro et al. 2006; Heikkinen et al. 2007; King et al. 2008) or NGS (for 

example: Park et al. 2012; Ding et al. 2017). These have shown that, despite extremely limited HGT 

and otherwise high levels of clonality between strains, B. pertussis maintains a moderate accessory 

genome, largely through gene loss rather than gene gain. For example, the most comprehensive 

pangenome study to date, using CGH on 171 B. pertussis strains, revealed that 15% of the genes 

present in the population appeared variably in the 171 strains studied.  (King et al. 2010). By using a 

set of probes which included B. bronchiseptica and B. parapertussis, King et al. were able to avoid 

biasing their analysis towards genes that were present only in the B. pertussis reference strain, 

Tohama I, which has been shown to lack over 45 kb of the accessory genome of the population (Caro 

et al. 2008; Bouchez et al. 2008).  

There is a lack of knowledge about the phenotypic impact of gene deletions in B. pertussis, however. 

As the cost of sequencing has plummeted, the frequency and ease with which genomes, and their 

constituent mutations, are published has far outpaced the publishing of their phenotypic impact. To 

cope with the deluge of data, ontology schemes strive to categorize genes into functional groups and 

estimate their function based on sequence homology. A variety of nucleotide polymorphisms in B. 

pertussis, such as those in ptxP3, have had their phenotypic impacts analysed, with some providing 

clear fitness advantages in the mouse model (Mooi et al. 2009). In contrast, many key gene deletions 

have yet to be experimentally characterized in B. pertussis. Using the ontology scheme Clusters of 

Orthologous Genes (COG), King et al. (2010) showed that, as expected, housekeeping genes were 

underrepresented in the deleted genes, whilst genes of unknown function were overrepresented by 
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25%. There therefore remains genetic “dark matter”, genes with unknown function which are 

overrepresented in gene deletions. 

Whilst B. pertussis is undisputedly undergoing genome reduction, evolution acts on phenotypes rather 

than genotypes. Therefore, it is likely that the B. pertussis genome is undergoing streamlining as an 

effect of certain phenotypes being selected against. It has been theorised that the transcriptional and 

translational cost of superfluous genes far outstrips the mere cost of DNA replication of such regions 

(Adler et al. 2014). B. pertussis maintains many seemingly functionless pseudogenes, despite the vast 

majority being shown to be transcriptionally inactive in vitro and in the mouse model (Bart et al. 2010; 

King et al. 2008; de Gouw et al. 2014). This supports the idea that the deletion of some genes provides 

a greater fitness benefit than the deletion of some others. Nonetheless, there is also evidence that 

the DNA content of the species is under selection, as pseudogenes have been shown to be mildly 

enriched in gene deletions, suggesting that streamlining of the DNA is also favoured to some extent 

(Kuo and Ochman 2010). Thus, the process of B. pertussis genome streamlining is likely to be a balance 

between entirely passive and entirely directed. 

There have been five deleted regions, totalling over 50 genes, that have been deleted in all recently 

isolated clinical strains in comparison to the reference strain Tohama I (King et al. 2010; Heikkinen et 

al. 2007; Bouchez et al. 2008). In addition to clinical strains, Bart et al (2014a) also investigated two 

strains that were used to make WCVs. In one of the vaccine strains, the five deleted regions were 

present; if these regions impact cell surface antigens, the immunity conveyed by the WCV could 

therefore also be affected. This highlights the clinical importance of understanding the continual 

evolution of B. pertussis, which is in part driven by genome reduction. 

5.2 Harnessing duplication as a driver of diversity 

Homologous recombination between IS elements has not only caused rearrangements and deletions 

in the B. pertussis genome, but also duplications ranging from single genes to large, multi-gene, 

regions. The general paradigm under which duplications occur is that a gene is duplicated, thus freeing 
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the second copy from the purifying selection of the original copy of the gene, potentially allowing it 

over time to evolve a new function. However, the second copy of the gene may also maintain the 

same function of the first gene. These types of events are “canonical” duplications that are well 

documented in the bacterial kingdom (for example: Ohta 1989; Lynch 2002; Magadum et al. 2013). 

Taking the genes from Tohama I and clustering them based on 90% nucleotide homology using the 

tool CDHIT (available as a web server: http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-

bin/index.cgi?cmd=cd-hit-est), it can be seen that Tohama I maintains two copies of nine separate 

genes ranging from 97% to 100% homology (excluding IS elements and rRNA genes) The maintenance 

of these duplications provides further evidence that it is not the genome size of the bacterium itself 

that is the primary target of streamlining but certain phenotypic traits which are coded in the DNA. 

Before the cost of NGS rapidly decreased in the late 2000s and early 2010s, duplications were primarily 

inferred by increased spot intensity in CGH or disturbances to southern blotting or PFGE patterns. 

Using these techniques, a number of multi-gene duplications were serendipitously discovered in the 

B. pertussis population. Using the power of long-read sequencing technologies, a number of studies 

had revealed further duplications, bringing the total to 13 serendipitously discovered mutations (Dalet 

et al. 2004; Caro et al. 2006; Heikkinen et al. 2007; Weigand et al. 2016; Dienstbier et al. 2018; Ring et 

al. 2018; Weigand et al. 2018).  A recent study by Abrahams et al. (In preparation) systematically 

analysed the B. pertussis population in search of large multi-gene duplications. Previously published 

short-read sequencing data were utilised and read depth abnormalities were used to predict 

duplications. In the 473 strains analysed, over 400 duplications were found.  

Abrahams et al. (In preparation) presents a deep description of duplications in B. pertussis. In addition 

to the quantity of duplications, over 90% of duplications were found at 11 “hotspot” loci but with 

varying gene contents, similar to a situation described previously in M. tuberculosis (Weiner et al. 

2012). Interestingly, when the CNVs at each hotspot loci were mapped to a phylogenetic tree based 

on core genome SNPs, they appeared not to be vertically inherited and instead appeared to occur 
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spontaneously many times at similar loci with subtly different gene content in each mutation, 

suggesting the existence of a potential phenotypic driver at those loci. 

Large multi-gene duplications are known to be unstable in the bacterial kingdom, and this has also 

been demonstrated in B. pertussis. For instance, Dalet et al. (2004) noticed that subculturing a single 

isolate produced both high haemolytic and average haemolytic single colonies. Further analysis 

showed that colonies with high haemolysis had a duplication of the locus encoding adenylate cyclase, 

a key virulence factor. Dalet et al. further demonstrated that subculturing a strain with a duplication 

produced colonies with a single copy of the locus, thus indicating a mixed population, ostensibly 

caused by an unstable locus. This early study used PFGE and southern blotting to screen colonies for 

copy number of the locus. These “pre-genomics” tools provide high quality data, but largely answer 

very specific research hypotheses, in contrast to sequencing experiments, which shed light on a vast 

range of research questions. Abrahams et al. used ultra-long nanopore sequencing reads (over 3,000 

reads longer than 50 kb) to confirm the presence of between 1 and 5 copies of a single locus within 

an otherwise clonal population. This tentatively supports the findings of Dalet et al., showing that in a 

single sample there exists a variety of genetic configurations of a single locus. This study demonstrates 

the potential of long-read sequencing to not only confirm long-predicted genomic structural variations 

in B. pertussis, but also to play a key role in the discovery and further investigation of a variety of 

entirely unpredicted genomic phenomena. The next steps in understanding these new genomic 

phenomena in B. pertussis should aim to elucidate the existence and extent of any phenotypic effects 

stemming from large duplicated regions, as well as any contribution they make to whooping cough 

virulence. 

6. What is the future for B. pertussis genomic research? 

Changes to the allelic profile of circulating B. pertussis strains have been recorded for many decades, 

in the pre-genomics era and beyond. The wide-spread availability of whole genome sequencing since 

the early 2000s, though, has enabled the screening of larger numbers of strains isolated over the last 
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hundred years, thus allowing us to understand, longitudinally, the extent to which B. pertussis has 

been evolving on the gene-level.  As seen above, there is evidence that many of these gene-level 

changes, in terms of both allelic profile and antigenic deficiency, have been influenced by the 

introduction of first the WCV and then the ACV. Since the 2010s, long-read sequencing has allowed us 

to investigate B. pertussis on a new level, that of the whole genome. The existence of a wide variety 

of inter-strain genomic rearrangements is now well-established, and more recent evidence has begun 

to show that other types of genome-level differences, such as large tandem duplications, also exist. 

However, the contribution of these observed gene- and genome-level variations to observed 

phenotypes is yet to be fully understood. In addition to informing our understanding of the continued 

evolution of the B. pertussis genome, a more thorough understanding of B. pertussis genomics could 

also contribute significantly to the future of whooping cough prevention strategies (Cherry 2019). 

Long-read sequencing will have a major part to play in any future investigation of B. pertussis genomic 

variations. Until recently, high-throughput long-read sequencing was restricted to larger laboratories 

which could afford a PacBio sequencing system, thus all the early long-read studies described here 

took place at national health laboratories: the CDC in the US, and the Centre for Infectious Diseases 

Control in the Netherlands. Oxford Nanopore Technologies (ONT) sequencing may provide a more 

accessible alternative for smaller laboratories and, indeed, two studies from late 2018 have shown the 

feasibility of assembling multiple closed B. pertussis genomes using ONT sequencing in hybrid with 

Illumina sequencing (Ring et al. 2018; Bouchez et al. 2018). In addition, ultra-long ONT sequencing has 

recently revealed yet further B. pertussis structural complexity, in the form of highly mixed 

populations (Abrahams et al. In preparation). Thus, it is likely that future studies of B. pertussis genome 

structure will utilise both PacBio and ONT sequencing. For investigating the most complicated 

structural features, such as very long tandem duplications, there will likely be a preference for ONT 

sequencing, as there is theoretically no upper limit to the length of sequencing read which could be 

produced by nanopore sequencing (Schmid et al. 2018). It is also likely that any studies utilising long 

reads to investigate B. pertussis  will use them in hybrid with a more accurate short-read technology, 
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although improvements to both long-read technologies mean that highly accurate long-read-only 

assemblies are on the horizon, which could enable both base-level and genome-level interrogations 

using a single technology (Wenger et al. 2019; Oxford Nanopore Technologies 2018).  

Alongside sequencing, there will still remain a place for other genomics tools, such as PFGE and optical 

mapping. The most recent survey of B. pertussis genomic diversity in the US, by Weigand et al. (2019), 

demonstrates the potential for such a wholistic approach. Using a combination of short-read 

sequencing, long-read sequencing, multilocus variable-number tandem-repeat analysis (MLVA), PFGE 

and optical mapping, Weigand et al. were able in a single study to characterise the gene- and genome-

level profiles, including allelic-profile, antigen deficiency, genome arrangement and the existence of 

several large tandem duplications, in 170 strains isolated between 2000 and 2013. Such detailed 

analyses will likely provide a springboard for future studies, for both the continued surveillance of B. 

pertussis evolution, and the investigation of any correlation between genotypic, genomic and 

phenotypic differences. 

7. Concluding remarks 

In summary, genomics has shown, and continues to show, that B. pertussis is not necessarily the 

entirely monomorphic species it is traditionally believed to be. Although the allelic profile of B. 

pertussis changed in response to the introduction of the WCV, and more rapidly since the switch to 

the ACV, diversity at the gene-level remains very limited when compared to many other bacteria. 

However, the wide availability of WGS, and particularly the more recent long-read sequencing 

technologies, have revealed dynamic and substantial genome-level variations, both between and 

within strains. Future work may utilise a wholistic approach, focussing on the further elucidation and 

phenotypic characterisation of both gene- and genome-level phenomena together, ultimately 

informing our understanding of how diversity is generated in species with limited base-level inter-

strain variation and, perhaps, the role this has played in the resurgence of whooping cough.  
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Figure Legends 

Figure 1: Reported incidence of whooping cough per 100,000 in the USA, 1990-2017, showing increase 
in all age brackets. Data source: CDC National notifiable diseases surveillance reports Centers for 
Disease Control (2019) 

Figure 2: Correlation between the introduction of a primary acellular pertussis vaccine containing 
pertactin (PRN) in a European country and the proportion of PRN-deficient isolates found in the study, 
2012–2015. Reproduced with permission from Barkoff et al. (2019) 

Figure 3: Different arrangements of  the B. pertussis genome seen in BP1917 and BP1920. Three large 
sections of the genome (1, 2, and 3) are inverted in BP1920, as shown by their appearance on the 
complementary strand when the two whole genome sequences are aligned using progressiveMauve 
(Darling et al. 2010). The Genbank accession numbers for BP1917 and BP1920 are CP009751 and 
CP009752, respectively.   

Figure 4: Increase in numbers of closed classical Bordetellae genome sequences (available on RefSeq) 
since the commercial introduction of long-read sequencing technologies 

Table 1: Characteristics of all classical Bordetella closed genomes available on RefSeq, March 2019 
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