8 research outputs found

    Réduction bioélectrocatalytique du dioxygÚne par des enzymes à cuivres connectées sur des électrodes nanostructurées et fonctionnalisées : intégration aux biopiles enzymatiques

    Get PDF
    The reduction of oxygen is realized in nature by oxidoreductase enzymes. Currently, these highly specific and efficient proteins are considered as biocatalysts for the development of biofuel cells. In this context, optimizing the orientation and the connection of multicopper oxidase (MCOs) for the reduction of O2 on functionalized carbon nanotubes was studied. In the first part of this manuscript, direct electron transfer of laccase is assessed and optimized by the non-covalent functionalization of CNTs by various hydrophobic derivatives. Electrochemical modeling and molecular dynamics enabled the rationalization of the developed biocathodes efficiency. In a second approach, the specific modification by pyrene moieties of laccases surface modified by protein engineered has also been considered. Additionally, supramolecular functionalization of CNTs by modified graphene sheets and gold nanoparticles also helped to promote laccase connection. The second part presents the development of other types of biocathodes based on the direct connection of bilirubin oxidase. Several strategies of covalent and non-covalent CNTs functionalization have been considered. The different biocathodes developed by the supramolecular assembly of nanostructured materials and MCOs delivered current density of several mA cm-2 for oxygen reduction. These new bioelectrodes combined with a bioanode which catalyzes the glucose oxidation have enabled the development of glucose/O2 enzymatic biofuel cells; delivering maximum power densities from 250 ”W cm-2 to 750 ”W cm-2 depending on the experimental conditions. Finally a hyperthermophilic hydrogenase based bioanode was developed and associated with a bilirubin oxidase-based biocathode to form a new design of H2/O2 biofuel cell. Within this device, the gas diffusion biocathode directly reduces oxygen from the air, which eliminates the use of a separation membrane while protecting the hydrogenase from its deactivation in the presence oxygen. This new biofuel cell delivers a maximum power density of 750 ”W cm-2.Dans la nature, la rĂ©duction du dioxygĂšne est catalysĂ©e par des enzymes de la famille des oxydorĂ©ductases. A l’heure actuelle, ces protĂ©ines spĂ©cifiques et efficaces sont envisagĂ©s comme biocatalyseurs au sein de biopile enzymatique. Dans ce contexte, l’optimisation de l’orientation et de la connexion d’oxydases multi-cuivre (MCOs) pour la rĂ©duction d’O2 sur des matrices de nanotubes carbone (CNTs) fonctionnalisĂ©es a Ă©tĂ© Ă©tudiĂ©e. Dans un premier temps, le transfert Ă©lectronique direct de la laccase est optimisĂ© par la fonctionnalisation non covalente de CNTs par divers dĂ©rivĂ©s hydrophobes. La dynamique molĂ©culaire ainsi que la modĂ©lisation Ă©lectrochimique ont permis la rationalisation des performances des diffĂ©rentes biocathodes dĂ©veloppĂ©es. Dans une seconde approche, la modification spĂ©cifique par des groupements pyrĂšne de la surface de laccases modifiĂ©es par mutagĂ©nĂšse a Ă©galement Ă©tĂ© envisagĂ©e. La fonctionnalisation supramolĂ©culaire de CNTs par des feuillets de graphĂšne fonctionnalisĂ©s d’une part, et par des nanoparticules d’or d’autre part, a Ă©galement permis de favoriser la connexion de laccases. La seconde partie prĂ©sente l’élaboration d’autres types de biocathodes basĂ©es sur la connexion directe de bilirubines oxydases. Plusieurs stratĂ©gies de fonctionnalisation covalente et non covalente de CNTs ont Ă©tĂ© envisagĂ©es. Les diffĂ©rentes biocathodes Ă©laborĂ©es par l’assemblage supramolĂ©culaire de MCOs et de matĂ©riaux nanostructurĂ©s dĂ©livrent des densitĂ©s de courant de rĂ©duction du dioxygĂšne de plusieurs mA cm-2. Ces nouvelles bioĂ©lectrodes combinĂ©es Ă  une bioanode qui catalyse l’oxydation du glucose ont permis le dĂ©veloppement de biopiles enzymatiques glucose/O2 dĂ©livrant des densitĂ©s maximales de puissances allant de 250 ”W cm-2 Ă  750 ”W cm-2 selon les conditions expĂ©rimentales. Enfin une bioanode Ă  base d’une hydrogĂ©nase hyperthermophile a Ă©tĂ© dĂ©veloppĂ©e et associĂ©e Ă  une biocathode Ă  base de bilirubine oxydase pour former un nouveau design de biopile H2/O2. Au sein de ce dispositif, la biocathode Ă  diffusion de gaz rĂ©duit directement l’oxygĂšne provenant de l’air, ce qui permet de s’affranchir de l’utilisation d’une membrane sĂ©paratrice tout en protĂ©geant l’hydrogĂ©nase de sa dĂ©sactivation en prĂ©sence d’oxygĂšne. Cette nouvelle biopile dĂ©livre une densitĂ© maximale de puissance de 750 ”W cm-2

    Bioelectrocatalytic reduction of dioxygen by multi-copper oxidases oriented and connected on functionalized nanostructured electrodes : application to enzymatic biofuel cells

    No full text
    Dans la nature, la rĂ©duction du dioxygĂšne est catalysĂ©e par des enzymes de la famille des oxydorĂ©ductases. A l’heure actuelle, ces protĂ©ines spĂ©cifiques et efficaces sont envisagĂ©s comme biocatalyseurs au sein de biopile enzymatique. Dans ce contexte, l’optimisation de l’orientation et de la connexion d’oxydases multi-cuivre (MCOs) pour la rĂ©duction d’O2 sur des matrices de nanotubes carbone (CNTs) fonctionnalisĂ©es a Ă©tĂ© Ă©tudiĂ©e. Dans un premier temps, le transfert Ă©lectronique direct de la laccase est optimisĂ© par la fonctionnalisation non covalente de CNTs par divers dĂ©rivĂ©s hydrophobes. La dynamique molĂ©culaire ainsi que la modĂ©lisation Ă©lectrochimique ont permis la rationalisation des performances des diffĂ©rentes biocathodes dĂ©veloppĂ©es. Dans une seconde approche, la modification spĂ©cifique par des groupements pyrĂšne de la surface de laccases modifiĂ©es par mutagĂ©nĂšse a Ă©galement Ă©tĂ© envisagĂ©e. La fonctionnalisation supramolĂ©culaire de CNTs par des feuillets de graphĂšne fonctionnalisĂ©s d’une part, et par des nanoparticules d’or d’autre part, a Ă©galement permis de favoriser la connexion de laccases. La seconde partie prĂ©sente l’élaboration d’autres types de biocathodes basĂ©es sur la connexion directe de bilirubines oxydases. Plusieurs stratĂ©gies de fonctionnalisation covalente et non covalente de CNTs ont Ă©tĂ© envisagĂ©es. Les diffĂ©rentes biocathodes Ă©laborĂ©es par l’assemblage supramolĂ©culaire de MCOs et de matĂ©riaux nanostructurĂ©s dĂ©livrent des densitĂ©s de courant de rĂ©duction du dioxygĂšne de plusieurs mA cm-2. Ces nouvelles bioĂ©lectrodes combinĂ©es Ă  une bioanode qui catalyse l’oxydation du glucose ont permis le dĂ©veloppement de biopiles enzymatiques glucose/O2 dĂ©livrant des densitĂ©s maximales de puissances allant de 250 ”W cm-2 Ă  750 ”W cm-2 selon les conditions expĂ©rimentales. Enfin une bioanode Ă  base d’une hydrogĂ©nase hyperthermophile a Ă©tĂ© dĂ©veloppĂ©e et associĂ©e Ă  une biocathode Ă  base de bilirubine oxydase pour former un nouveau design de biopile H2/O2. Au sein de ce dispositif, la biocathode Ă  diffusion de gaz rĂ©duit directement l’oxygĂšne provenant de l’air, ce qui permet de s’affranchir de l’utilisation d’une membrane sĂ©paratrice tout en protĂ©geant l’hydrogĂ©nase de sa dĂ©sactivation en prĂ©sence d’oxygĂšne. Cette nouvelle biopile dĂ©livre une densitĂ© maximale de puissance de 750 ”W cm-2.The reduction of oxygen is realized in nature by oxidoreductase enzymes. Currently, these highly specific and efficient proteins are considered as biocatalysts for the development of biofuel cells. In this context, optimizing the orientation and the connection of multicopper oxidase (MCOs) for the reduction of O2 on functionalized carbon nanotubes was studied. In the first part of this manuscript, direct electron transfer of laccase is assessed and optimized by the non-covalent functionalization of CNTs by various hydrophobic derivatives. Electrochemical modeling and molecular dynamics enabled the rationalization of the developed biocathodes efficiency. In a second approach, the specific modification by pyrene moieties of laccases surface modified by protein engineered has also been considered. Additionally, supramolecular functionalization of CNTs by modified graphene sheets and gold nanoparticles also helped to promote laccase connection. The second part presents the development of other types of biocathodes based on the direct connection of bilirubin oxidase. Several strategies of covalent and non-covalent CNTs functionalization have been considered. The different biocathodes developed by the supramolecular assembly of nanostructured materials and MCOs delivered current density of several mA cm-2 for oxygen reduction. These new bioelectrodes combined with a bioanode which catalyzes the glucose oxidation have enabled the development of glucose/O2 enzymatic biofuel cells; delivering maximum power densities from 250 ”W cm-2 to 750 ”W cm-2 depending on the experimental conditions. Finally a hyperthermophilic hydrogenase based bioanode was developed and associated with a bilirubin oxidase-based biocathode to form a new design of H2/O2 biofuel cell. Within this device, the gas diffusion biocathode directly reduces oxygen from the air, which eliminates the use of a separation membrane while protecting the hydrogenase from its deactivation in the presence oxygen. This new biofuel cell delivers a maximum power density of 750 ”W cm-2

    Electrochemically‐driven reduction of carbon dioxide mediated by mono‐reduced Mo‐diimine tetracarbonyl complexes: electrochemical, spectroelectrochemical and theoretical studies

    No full text
    International audienceThe activation of carbon dioxide by three different Mo‐diimine complexes [Mo(CO) 4 (L)] (L = bipyridine (bpy), 1,10‐phenantroline (phen) or pyridylindoziline (py‐indz)) has been investigated by electrochemistry and spectroelectrochemistry. Under inert atmosphere, monoreduction of the complexes is ligand‐centred and leads to tetracarbonyl [Mo(CO) 4 (L)] ‱− species, whereas double reduction induces CO release. Under CO 2 , [Mo(CO) 4 (L)] complexes undergo unexpected coupled chemical‐electrochemical reactions at the first reduction step, leading to the formation of reduced CO 2 derivatives. The experimental results obtained from IR, NIR and UV‐Vis spectroelectrochemistry, as well as DFT calculations, demonstrate an electron‐transfer reaction whose rate is ligand‐dependent

    Osmium(II) Complexes Bearing Chelating N‑Heterocyclic Carbene and Pyrene-Modified Ligands: Surface Electrochemistry and Electron Transfer Mediation of Oxygen Reduction by Multicopper Enzymes

    No full text
    We report the synthesis of original osmium­(II) complexes bearing chelating N-heterocyclic (NHC) and bipyridine ligands. The pincer ligand 1,1â€Č-dimethyl-3,3â€Č-methylenediimidazole-2,2â€Č-diylidene was used to tune the redox properties of osmium complexes. Bipyridine ligands modified with pyrene groups were chosen to study the electrosynthesis of Os<sup>II</sup>-NHC-based metallopolymers as well as the noncovalent immobilization of these complexes on carbon-nanotube (CNT) electrodes. Poly-[Os<sup>II</sup>-NHC] polypyrene polymer was electrogenerated on a GC electrode, whereas the pyrene-modified [Os<sup>II</sup>-NHC] could interact with the CNTs’ sidewalls through π–π interactions, allowing the immobilization of the NHC complexes at the surface of π-extended nanostructured electrodes. Furthermore, an Os<sup>II</sup>-NHC complex was studied in water, showing electron transfer mediation with multicopper enzymes. UV–visible and electrochemical experiments demonstrate that redox properties of the Os<sup>II</sup>-NHC complex provide sufficient driving force for electron transfer with bilirubin oxidase from <i>Myrothecium verrucaria</i> while achieving high potential electroenzymatic oxygen reduction at <i>E</i> = +0.45 V vs Ag/AgCl at pH 6.5

    Osmium(II) Complexes Bearing Chelating N‑Heterocyclic Carbene and Pyrene-Modified Ligands: Surface Electrochemistry and Electron Transfer Mediation of Oxygen Reduction by Multicopper Enzymes

    No full text
    We report the synthesis of original osmium­(II) complexes bearing chelating N-heterocyclic (NHC) and bipyridine ligands. The pincer ligand 1,1â€Č-dimethyl-3,3â€Č-methylenediimidazole-2,2â€Č-diylidene was used to tune the redox properties of osmium complexes. Bipyridine ligands modified with pyrene groups were chosen to study the electrosynthesis of Os<sup>II</sup>-NHC-based metallopolymers as well as the noncovalent immobilization of these complexes on carbon-nanotube (CNT) electrodes. Poly-[Os<sup>II</sup>-NHC] polypyrene polymer was electrogenerated on a GC electrode, whereas the pyrene-modified [Os<sup>II</sup>-NHC] could interact with the CNTs’ sidewalls through π–π interactions, allowing the immobilization of the NHC complexes at the surface of π-extended nanostructured electrodes. Furthermore, an Os<sup>II</sup>-NHC complex was studied in water, showing electron transfer mediation with multicopper enzymes. UV–visible and electrochemical experiments demonstrate that redox properties of the Os<sup>II</sup>-NHC complex provide sufficient driving force for electron transfer with bilirubin oxidase from <i>Myrothecium verrucaria</i> while achieving high potential electroenzymatic oxygen reduction at <i>E</i> = +0.45 V vs Ag/AgCl at pH 6.5

    Hosting Adamantane in the Substrate Pocket of Laccase: Direct Bioelectrocatalytic Reduction of O<sub>2</sub> on Functionalized Carbon Nanotubes

    No full text
    We report the efficient immobilization and orientation of laccase from <i>Trametes versicolor</i> on MWCNT electrodes using 1-pyrenebutyric acid adamantyl amide as a supramolecular linker. We demonstrate the ability of adamantane to specifically interact with the hydrophobic cavity of laccase, while pyrene interacts with MWCNT sidewalls by π–π interactions. Adamantane allows the oriented immobilization of laccases on MWCNT electrodes. Using an anthraquinone-modified pyrene derivative for comparison, adamantane-modified MWCNTs achieve the stable immobilization and orientation of a higher number of enzymes per surface units, as confirmed by electrochemistry, theoretical calculations, and quartz crystal microbalance experiments. Furthermore, the efficient direct electron transfer ensures bioelectrocatalytic oxygen reduction at high half-wave potential of 0.55 V vs SCE accompanied by no kinetic limitation by the heterogeneous electron transfer and maximum current densities of 2.4 mA cm<sup>–2</sup>

    Electron-Rich, Diiron Bis(monothiolato) Carbonyls: C–S Bond Homolysis in a Mixed Valence Diiron Dithiolate

    No full text
    The synthesis and redox properties are presented for the electron-rich bis­(monothiolate)­s Fe<sub>2</sub>(SR)<sub>2</sub>­(CO)<sub>2</sub>­(dppv)<sub>2</sub> for R = Me ([<b>1</b>]<sup>0</sup>), Ph ([<b>2</b>]<sup>0</sup>), CH<sub>2</sub>Ph ([<b>3</b>]<sup>0</sup>). Whereas related derivatives adopt <i>C</i><sub>2</sub>-symmetric Fe<sub>2</sub>(CO)<sub>2</sub>P<sub>4</sub> cores, [<b>1</b>]<sup>0</sup>–[<b>3</b>]<sup>0</sup> have <i>C</i><sub>s</sub> symmetry resulting from the unsymmetrical steric properties of the axial vs equatorial R groups. Complexes [<b>1</b>]<sup>0</sup>–[<b>3</b>]<sup>0</sup> undergo 1e<sup>–</sup> oxidation upon treatment with ferrocenium salts to give the mixed valence cations [Fe<sub>2</sub>(SR)<sub>2</sub>­(CO)<sub>2</sub>­(dppv)<sub>2</sub>]<sup>+</sup>. As established crystallographically, [<b>3</b>]<sup>+</sup> adopts a rotated structure, characteristic of related mixed valence diiron complexes. Unlike [<b>1</b>]<sup>+</sup> and [<b>2</b>]<sup>+</sup> and many other [Fe<sub>2</sub>­(SR)<sub>2</sub>L<sub>6</sub>]<sup>+</sup> derivatives, [<b>3</b>]<sup>+</sup> undergoes C–S bond homolysis, affording the diferrous sulfido-thiolate [Fe<sub>2</sub>­(SCH<sub>2</sub>Ph)­(S)­(CO)<sub>2</sub>­(dppv)<sub>2</sub>]<sup>+</sup> ([<b>4</b>]<sup>+</sup>). According to X-ray crystallography, the first coordination spheres of [<b>3</b>]<sup>+</sup> and [<b>4</b>]<sup>+</sup> are similar, but the Fe–sulfido bonds are short in [<b>4</b>]<sup>+</sup>. The conversion of [<b>3</b>]<sup>+</sup> to [<b>4</b>]<sup>+</sup> follows first-order kinetics, with <i>k</i> = 2.3 × 10<sup>–6</sup> s<sup>–1</sup> (30 °C). When the conversion is conducted in THF, the organic products are toluene and dibenzyl. In the presence of TEMPO, the conversion of [<b>3</b>]<sup>+</sup> to [<b>4</b>]<sup>+</sup> is accelerated about 10×, the main organic product being TEMPO-CH<sub>2</sub>Ph. DFT calculations predict that the homolysis of a C–S bond is exergonic for [Fe<sub>2</sub>­(SCH<sub>2</sub>Ph)<sub>2</sub>­(CO)<sub>2</sub>­(PR<sub>3</sub>)<sub>4</sub>]<sup>+</sup> but endergonic for the neutral complex as well as less substituted cations. The unsaturated character of [<b>4</b>]<sup>+</sup> is indicated by its double carbonylation to give [Fe<sub>2</sub>­(SCH<sub>2</sub>Ph)­(S)­(CO)<sub>4</sub>­(dppv)<sub>2</sub>]<sup>+</sup> ([<b>5</b>]<sup>+</sup>), which adopts a bioctahedral structure
    corecore