7 research outputs found

    Is mitochondrial DNA turnover slower than commonly assumed?

    Get PDF
    Mutations arise during DNA replication due to oxidative lesions and intrinsic polymerase errors. Mitochondrial DNA (mtDNA) mutation rate is therefore closely linked to the mitochondrial DNA turnover process, especially in post mitotic cells. This makes the mitochondrial DNA turnover rate critical for understanding the origin and dynamics of mtDNA mutagenesis in post mitotic cells. Experimental mitochondrial turnover quantification has been based on different mitochondrial macromolecules, such as mitochondrial proteins, lipids and DNA, and the experimental data suggested highly divergent turnover rates, ranging from over 2days to about 1year. In this article we argue that mtDNA turnover rate cannot be as fast as is often envisaged. Using a stochastic model based on the chemical master equation, we show that a turnover rate corresponding to mtDNA half-life in the order of months is the most consistent with published mtDNA mutation level

    Leucine-Rich, Potent Anti-Bacterial Protein against Vibrio cholerae, Staphylococcus aureus from Solanum trilobatum Leaves

    No full text
    A 24 kDa leucine-rich protein from ion exchange fractions of Solanum trilobatum, which has anti-bacterial activity against both the Gram-negative Vibrio cholerae and Gram-positive Staphylococcus aureus bacteria has been purified. In this study, mass spectrometry analysis identified the leucine richness and found a luminal binding protein (LBP). Circular dichroism suggests that the protein was predominantly composed of α- helical contents of its secondary structure. Scanning electron microscopy visualized the characteristics and morphological and structural changes in LBP-treated bacterium. Further in vitro studies confirmed that mannose-, trehalose- and raffinose-treated LBP completely inhibited the hemagglutination ability towards rat red blood cells. Altogether, these studies suggest that LBP could bind to sugar moieties which are abundantly distributed on bacterial surface which are essential for maintaining the structural integrity of bacteria. Considering that Solanum triolbatum is a well-known medicinal and edible plant, in order to shed light on its ancient usage in this work, an efficient anti-microbial protein was isolated, characterized and its in vitro functional study against human pathogenic bacteria was evaluated

    Efficacy of Antimicrobial and Larvicidal Activities of Green Synthesized Silver Nanoparticles Using Leaf Extract of Plumbago auriculata Lam

    No full text
    This work reports the synthesis of silver nanoparticles (AgNPs) using aqueous extract of Plumbago auriculata, and evaluates their antibacterial and larvicidal activities. The synthesized silver nanoparticles were characterized by various spectroscopy techniques, such as FTIR, XRD, TEM, EDX, Zeta potential, and DLS. The synthesized AgNPs exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria, such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae. Furthermore, synthesized nanoparticles inhibited the fourth instars larvae of Aedes aegypti and Culex quinquefasciatus at the concentration of 45.1 and 41.1 µg/mL respectively. Results of dose-dependent studies showed that synthesized nanoparticles were also effective at low concentrations. Molecular docking studies performed with the salivary protein and odorant-binding protein of Aedes aegypti and Culex quinquefasciatus demonstrated that the naphthoquinone compound plumbagin exhibited reliable binding affinity towards the two enzymes. The findings thus reveal that the plant extract and its nanoparticles can be a better alternative to available chemicals to control mosquitos.Land and Food Systems, Faculty ofNon UBCReviewedFacult
    corecore