63 research outputs found

    Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels

    Get PDF
    Research has shown that including up to 5 percent w/w carbon nanofibers in a silica backbone of polymer crosslinked aerogels improves its strength, tripling compressive modulus and increasing tensile stress-at-break five-fold with no increase in density or decrease in porosity. In addition, the initial silica hydrogels, which are produced as a first step in manufacturing the aerogels, can be quite fragile and difficult to handle before cross-linking. The addition of the carbon nanofiber also improves the strength of the initial hydrogels before cross-linking, improving the manufacturing process. This can also be extended to other oxide aerogels, such as alumina or aluminosilicates, and other nanofiber types, such as silicon carbide

    Urinary eicosanoid metabolites in HIV-infected women with central obesity switching to raltegravir: an analysis from the women, integrase, and fat accumulation trial.

    Get PDF
    Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m(2) completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus -0.02; P = 0.06). Baseline PGI-M was lower in the RAL arm (P = 0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho = 0.45; P = 0.04) and TxB2 (rho = 0.44; P = 0.005) changes, with a trend seen for PGE-M (rho = 0.41; P = 0.07). In an adjusted model, age ≄ 50 years (N = 8) was associated with increased PGE-M (P = 0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≄ 50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study

    Urinary Eicosanoid Metabolites in HIV-Infected Women with Central Obesity Switching to Raltegravir: An Analysis from the Women, Integrase, and Fat Accumulation Trial

    Get PDF
    Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m2 completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus −0.02; P=0.06). Baseline PGI-M was lower in the RAL arm (P=0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho=0.45; P=0.04) and TxB2 (rho=0.44; P=0.005) changes, with a trend seen for PGE-M (rho=0.41; P=0.07). In an adjusted model, age ≄ 50 years (N=8) was associated with increased PGE-M (P=0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≄50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study

    Adrenocortical Challenge Response and Genomic Analyses in Scottish Terriers With Increased Alkaline Phosphate Activity

    Get PDF
    Scottish terriers (ST) frequently have increased serum alkaline phosphatase (ALP) of the steroid isoform. Many of these also have high serum concentrations of adrenal sex steroids. The study's objective was to determine the cause of increased sex steroids in ST with increased ALP. Adrenal gland suppression and stimulation were compared by low dose dexamethasone (LDDS), human chorionic gonadotropin (HCG) and adrenocorticotropic hormone (ACTH) response tests. Resting plasma pituitary hormones were measured. Steroidogenesis-related mRNA expression was evaluated in six ST with increased ALP, eight dogs of other breeds with pituitary-dependent hyperadrenocorticism (HAC), and seven normal dogs. The genome-wide association of single nucleotide polymorphisms (SNP) with ALP activity was evaluated in 168 ST. ALP (reference interval 8–70 U/L) was high in all ST (1,054 U/L) and HAC (985 U/L) dogs. All HAC dogs and 2/8 ST had increased cortisol post-ACTH administration. All ST and 2/7 Normal dogs had increased sex steroids post-ACTH. ST and Normal dogs had similar post-challenge adrenal steroid profiles following LDDS and HCG. Surprisingly, mRNA of hydroxysteroid 17-beta dehydrogenase 2 (HSD17B2) was lower in ST and Normal dogs than HAC. HSD17B2 facilities metabolism of sex steroids. A SNP region was identified on chromosome 5 in proximity to HSD17B2 that correlated with increased serum ALP. ST in this study with increased ALP had a normal pituitary-adrenal axis in relationship to glucocorticoids and luteinizing hormone. We speculate the identified SNP and HSD17B2 gene may have a role in the pathogenesis of elevated sex steroids and ALP in ST

    Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress.

    Get PDF
    A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells. From this screen we discovered a 1,4-Naphthoquinone (referred to as BH10) that is toxic to a broad range of cancer cell types. BH10 has improved cancer-selective toxicity compared to doxorubicin, 17-AAG, vitamin K3, and other known anti-cancer quinones. BH10 increases glucose oxidation via both mitochondrial and pentose phosphate pathways, decreases glycolysis, lowers GSH:GSSG and NAPDH/NAPD+ ratios exclusively in cancer cells, and induces necrosis. BH10 targets mitochondrial redox defence as evidenced by increased mitochondrial peroxiredoxin 3 oxidation and decreased mitochondrial aconitase activity, without changes in markers of cytosolic or nuclear damage. Over-expression of mitochondria-targeted catalase protects cells from BH10-mediated toxicity, while the thioredoxin reductase inhibitor auranofin synergistically enhances BH10-induced peroxiredoxin 3 oxidation and cytotoxicity. Overall, BH10 represents a 1,4-Naphthoquinone with an improved cancer-selective cytotoxicity profile via its mitochondrial specificity

    A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology.

    Get PDF
    Excitatory neurons are preferentially impaired in early Alzheimer's disease but the pathways contributing to their relative vulnerability remain largely unknown. Here we report that pathological tau accumulation takes place predominantly in excitatory neurons compared to inhibitory neurons, not only in the entorhinal cortex, a brain region affected in early Alzheimer's disease, but also in areas affected later by the disease. By analyzing RNA transcripts from single-nucleus RNA datasets, we identified a specific tau homeostasis signature of genes differentially expressed in excitatory compared to inhibitory neurons. One of the genes, BCL2-associated athanogene 3 (BAG3), a facilitator of autophagy, was identified as a hub, or master regulator, gene. We verified that reducing BAG3 levels in primary neurons exacerbated pathological tau accumulation, whereas BAG3 overexpression attenuated it. These results define a tau homeostasis signature that underlies the cellular and regional vulnerability of excitatory neurons to tau pathology

    State Control and the Effects of Foreign Relations on Bilateral Trade

    Get PDF
    Do states use trade to reward and punish partners? WTO rules and the pressures of globalization restrict states’ capacity to manipulate trade policies, but we argue that governments can link political goals with economic outcomes using less direct avenues of inïŹ‚uence over ïŹrm behavior. Where governments intervene in markets, politicization of trade is likely to occur. In this paper, we examine one important form of government control: state ownership of ïŹrms. Taking China and India as examples, we use bilateral trade data by ïŹrm ownership type, as well as measures of bilateral political relations based on diplomatic events and UN voting to estimate the effect of political relations on import and export ïŹ‚ows. Our results support the hypothesis that imports controlled by state-owned enterprises (SOEs) exhibit stronger responsiveness to political relations than imports controlled by private enterprises. A more nuanced picture emerges for exports; while India’s exports through SOEs are more responsive to political tensions than its ïŹ‚ows through private entities, the opposite is true for China. This research holds broader implications for how we should think about the relationship between political and economic relations going forward, especially as a number of countries with partially state-controlled economies gain strength in the global economy

    Validation of food store environment secondary data source and the role of neighborhood deprivation in Appalachia, Kentucky

    Get PDF
    Background Based on the need for better measurement of the retail food environment in rural settings and to examine how deprivation may be unique in rural settings, the aims of this study were: 1) to validate one commercially available data source with direct field observations of food retailers; and 2) to examine the association between modified neighborhood deprivation and the modified retail food environment score (mRFEI). Methods Secondary data were obtained from a commercial database, InfoUSA in 2011, on all retail food outlets for each census tract. In 2011, direct observation identifying all listed food retailers was conducted in 14 counties in Kentucky. Sensitivity and positive predictive values (PPV) were compared. Neighborhood deprivation index was derived from American Community Survey data. Multinomial regression was used to examine associations between neighborhood deprivation and the mRFEI score (indicator of retailers selling healthy foods such as low-fat foods and fruits and vegetables relative to retailers selling more energy dense foods). Results The sensitivity of the commercial database was high for traditional food retailers (grocery stores, supermarkets, convenience stores), with a range of 0.96-1.00, but lower for non-traditional food retailers; dollar stores (0.20) and Farmerñ€ℱs Markets (0.50). For traditional food outlets, the PPV for smaller non-chain grocery stores was 38%, and large chain supermarkets was 87%. Compared to those with no stores in their neighborhoods, those with a supercenter [OR 0.50 (95% CI 0.27. 0.97)] or convenience store [OR 0.67 (95% CI 0.51, 0.89)] in their neighborhood have lower odds of living in a low deprivation neighborhood relative to a high deprivation neighborhood. Conclusion The secondary commercial database used in this study was insufficient to characterize the rural retail food environment. Our findings suggest that neighborhoods with high neighborhood deprivation are associated with having certain store types that may promote less healthy food options

    Patterns of Non-injection Drug Use Associated with Injection Cessation among Street-Involved Youth in Vancouver, Canada

    Get PDF
    Although abstinence from drug use is often a key goal of youth substance use treatment, transitioning to less harmful routes and types of drug use is desirable from both a clinical and public health perspective. Despite this, little is known about the trajectories of youth who inject drugs including changes in patterns of non-injection drug use. The At-Risk Youth Study (ARYS) is a longitudinal cohort of street-involved youth who use drugs in Vancouver, Canada. We used linear growth curve modeling to compare changes in non-injection drug use among participants who ceased injecting drugs for at least one 6-month period between September 2005 and May 2015 to matched controls who continued injecting over the same period. Of 387 eligible participants, 173 (44.7%) reported ceasing drug injection at least once. Non-injection drug use occurred during 160 (79.6%) periods of injection cessation. In adjusted linear growth curve analyses, the only non-injection drug use pattern observed to decrease significantly more than controls following injection cessation was daily crack/cocaine use (p = 0.024). With the exception of frequent crack/cocaine use, transitions out of injection drug use did not appear to coincide with increased reductions in patterns of non-injection drug use. Our findings indicate that most (80%) of the observed injection cessation events occurred in the context of ongoing substance use. Given that transitioning out of drug injection represents a significant reduction in risk and harm, efforts supporting vulnerable youth to move away from injecting may benefit from approaches that allow for ongoing non-injection drug use. &nbsp

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H
    • 

    corecore