1,928 research outputs found

    Exposure to glycols and their renal effects in motor servicing workers

    Get PDF
    Ten car mechanics frequently exposed to glycol-based cooling liquids were followed during a workshift. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were measured. The car mechanics gave urine samples after the workshift and their excretion of ethylene glycol, propylene glycol, oxalic acid, calcium and ammonia was analysed and compared to that of unexposed office workers. Urinary succinate dehydrogenase activity and glycosaminoglycans were also measured in both groups. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were negligible. Urinary ethylene glycol excretion in exposed workers was significantly higher than that in unexposed workers, but propylene glycol excretion was at the same level as in controls. In the exposed group, the excretion of the end metabolite of ethylene glycol, oxalic acid (47 ± 11 mmol/mol creatinine, mean ± SD, n= 10) differed slightly from that of controls (36 ± 14 mmol/mol creatinine, mean ± SD, n= 10). Urinary excretion of ammonia was higher among exposed workers than office workers. The excretion of calcium did not differ from that of controls. A marginally decreased urinary succinate dehydrogenase activity was found in the exposed men. The excretion of glycosaminoglycans was significantly lower in exposed workers. Therefore, it seems that ethylene glycol is absorbed by skin contact. The internal body burden is associated with oxaluria and increased ammoniagenesis typical of chronic acidosi

    The relationship between serum 25-hydroxyvitamin D and parathyroid hormone concentration in assessing vitamin D deficiency in pet rabbits

    Get PDF
    Background Vitamin D deficiency and related metabolic bone diseases in pet rabbits have been intermittently debated. In human research, the parathyroid hormone concentration in relation to the 25-hydroxyvitamin D concentration is used to determine vitamin D deficiency. Thus, this study aimed to identify the breakpoint in the 25-hydroxyvitamin D concentration indicating a significant change in the parathyroid hormone concentration in 139 pet rabbits. An enzyme immunoassay kit was used for 25-hydroxyvitamin D analysis and the intact parathyroid hormone (PTH 1-84) immunoradiometric assay kit for parathyroid hormone analysis. The mid-tibial cortical bone density was measured using peripheral quantitative computed tomography. A segmented linear regression analysis was performed, with the 25-hydroxyvitamin D concentration as the independent variable, and parathyroid hormone, ionised calcium, total calcium, inorganic phosphorus concentrations and the mid-tibial cortical density as the dependent variables. Results The breakpoint for the parathyroid hormone concentration occurred at a 25(OH)D concentration of 17 ng/mL, whereas the cortical bone density breakpoint occurred at a 25-hydroxyvitamin D concentration of 19 ng/mL. No breakpoints were found for ionised calcium, total calcium or phosphorus. Conclusions These results suggest that a serum 25-hydroxyvitamin D concentration of 17 ng/mL serves as the threshold for vitamin D deficiency in rabbits. Nearly one-third of the rabbits had a serum 25-hydroxyvitamin D concentration below this threshold. Concerns persist regarding the high prevalence of vitamin D deficiency in pet rabbits and the possible health consequences caused by a chronic vitamin D deficiency, including the risk for metabolic bone diseases.Peer reviewe

    Supermagnetosonic jets behind a collisionless quasi-parallel shock

    Full text link
    The downstream region of a collisionless quasi-parallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multi-spacecraft measurements of this type of supermagnetosonic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasi-parallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasi-parallel shocks in many plasma environments.Comment: accepted to Phys. Rev. Lett. (Nov 5, 2009

    Effect of site of lactate infusion on regional lactate exchange in pigs

    Get PDF
    Background The rate of extra-hepatic lactate production and the route of influx of lactate to the liver may influence both hepatic and extra-hepatic lactate exchange. We assessed the dose-response of hepatic and extra-hepatic lactate exchange during portal and central venous lactate infusion. Methods Eighteen pigs randomly received either portal (n=5) or central venous (n=7) lactate infusion or saline (n=6). Sodium lactate was infused at 33, 66, 99, and 133 ”mol kg−1 min−1 for 20 min each. Systemic and regional abdominal blood flows and plasma lactate were measured at 20 min intervals until 1 h post-infusion, and regional lactate exchange was calculated (area under lactate uptake-time curve). Results Total hepatic lactate uptake [median (95% confidence interval)] during the experimental protocol (140 min) was higher during portal [8198 (5487-12 798) ”mol kg−1] than during central venous lactate infusion [4530 (3903-5514) ”mol kg−1, P<0.05]. At a similar hepatic lactate delivery (∌400 ”mol kg−1 min−1), hepatic lactate uptake [mean and standard deviation (sd)] was higher during portal [118 (sd 55) ”mol kg−1 min−1] than during central venous lactate infusion [44 (12) ”mol kg−1 min−1, P<0.05]. Time courses of arterial lactate concentrations and lactate uptake at other measured regions were similar in both groups. Conclusions Higher hepatic lactate uptake during portal compared with central venous lactate infusion at a similar total hepatic lactate influx underlines the role of portal vein lactate concentration in total hepatic lactate uptake capacity. Arterial lactate concentration does not depend on the site of lactate infusion. At higher arterial lactate concentrations, all regions participated in lactate uptak

    On the characterization of magnetic reconnection in global MHD simulations

    Get PDF
    The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency

    The magnetotail reconnection region in a global MHD simulation

    No full text
    International audienceThis work investigates the nature and the role of magnetic reconnection in a global magnetohydrodynamic simulation of the magnetosphere. We use the Gumics-4 simulation to study reconnection that occurs in the near-Earth region of the current sheet in the magnetotail. We locate the current sheet surface and the magnetic x-line that appears when reconnection starts. We illustrate the difference between quiet and active states of the reconnection region: variations in such quantities as the current sheet thickness, plasma flow velocities, and Poynting vector divergence are strong. A characteristic feature is strong asymmetry caused by non-perpendicular inflows. We determine the reconnection efficiency by the net rate of Poynting flux into the reconnection region. The reconnection efficiency in the simulation is directly proportional to the energy flux into the magnetosphere through the magnetopause: about half of all energy flowing through the magnetosphere is converted from an electromagnetic into a mechanical form in the reconnection region. Thus, the tail reconnection that is central to the magnetospheric circulation is directly driven; the tail does not exhibit a cycle of storage and rapid release of magnetic energy. We find similar behaviour of the tail in both synthetic and real event runs

    Differentiation of Murine C2C12 Myoblasts Strongly Reduces the Effects of Myostatin on Intracellular Signaling

    Get PDF
    Alongside in vivo models, a simpler and more mechanistic approach is required to study the effects of myostatin on skeletal muscle because myostatin is an important negative regulator of muscle size. In this study, myostatin was administered to murine (C2C12) and human (CHQ) myoblasts and myotubes. Canonical and noncanonical signaling downstream to myostatin, related ligands, and their receptor were analyzed. The effects of tumorkines were analyzed after coculture of C2C12 and colon cancer-C26 cells. The effects of myostatin on canonical and noncanonical signaling were strongly reduced in C2C12 cells after differentiation. This may be explained by increased follistatin, an endogenous blocker of myostatin and altered expression of activin receptor ligands. In contrast, CHQ cells were equally responsive to myostatin, and follistatin remained unaltered. Both myostatin administration and the coculture stimulated pathways associated with inflammation, especially in C2C12 cells. In conclusion, the effects of myostatin on intracellular signaling may be cell line- or organism-specific, and C2C12 myotubes seem to be a nonoptimal in vitro model for investigating the effects of myostatin on canonical and noncanonical signaling in skeletal muscle. This may be due to altered expression of activin receptor ligands and their regulators during muscle cell differentiation.Peer reviewe

    1,2,6-thiadiazinones as novel narrow spectrum calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) inhibitors

    Get PDF
    We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors

    From Sun to Interplanetary Space: What is the Pathlength of Solar Energetic Particles?

    Get PDF
    Solar energetic particles (SEPs), accelerated during solar eruptions, propagate in turbulent solar wind before being observed with in situ instruments. In order to interpret their origin through comparison with remote sensing observations of the solar eruption, we thus must deconvolve the transport effects due to the turbulent magnetic fields from the SEP observations. Recent research suggests that the SEP propagation is guided by the turbulent meandering of the magnetic fieldlines across the mean magnetic field. However, the lengthening of the distance the SEPs travel, due to the fieldline meandering, has so far not been included in SEP event analysis. This omission can cause significant errors in estimation of the release times of SEPs at the Sun. We investigate the distance traveled by the SEPs by considering them to propagate along fieldlines that meander around closed magnetic islands that are inherent in turbulent plasma. We introduce a fieldline random walk model which takes into account the physical scales associated to the magnetic islands. Our method remedies the problem of the diffusion equation resulting in unrealistically short pathlengths, and the fractal dependence of the pathlength of random walk on the length of the random-walk step. We find that the pathlength from the Sun to 1au can be below the nominal Parker spiral length for SEP events taking place at solar longitudes 45E to 60W, whereas the western and behind-the-limb particles can experience pathlengths longer than 2au due to fieldline meandering
    • 

    corecore