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Abstract: Alongside in vivo models, a simpler and more mechanistic approach is required to study
the effects of myostatin on skeletal muscle because myostatin is an important negative regulator
of muscle size. In this study, myostatin was administered to murine (C2C12) and human (CHQ)
myoblasts and myotubes. Canonical and noncanonical signaling downstream to myostatin, related
ligands, and their receptor were analyzed. The effects of tumorkines were analyzed after coculture of
C2C12 and colon cancer-C26 cells. The effects of myostatin on canonical and noncanonical signaling
were strongly reduced in C2C12 cells after differentiation. This may be explained by increased
follistatin, an endogenous blocker of myostatin and altered expression of activin receptor ligands.
In contrast, CHQ cells were equally responsive to myostatin, and follistatin remained unaltered.
Both myostatin administration and the coculture stimulated pathways associated with inflammation,
especially in C2C12 cells. In conclusion, the effects of myostatin on intracellular signaling may be
cell line- or organism-specific, and C2C12 myotubes seem to be a nonoptimal in vitro model for
investigating the effects of myostatin on canonical and noncanonical signaling in skeletal muscle.
This may be due to altered expression of activin receptor ligands and their regulators during muscle
cell differentiation.
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1. Introduction

The role of myostatin (growth differentiation factor 8, GDF8), a member of the transforming
growth factor-β (TGF-β) family, as a negative regulator of muscle size is well recognized (for review,
see [1,2]). Myostatin is a secreted protein that is expressed mainly in the skeletal muscle and to a
lesser extent in the cardiac muscle and adipose tissue [3,4]. Besides coordinating normal growth and
development in a healthy state, abnormal myostatin regulation promotes muscle atrophy (for review,
see [5]). Myostatin binding to the activin type 2A and 2B receptors (ACVR2A/B) inhibits anabolic
processes and muscle regeneration as well as enhances catabolic signaling in the skeletal muscle [6–9].
However, blocking tumor-derived cytokines (“tumorkines”), such as activin receptor (ACVR2) ligands
(e.g., activins, myostatin and GDF11 [4,10,11]), by ACVR2 antagonism has attenuated muscle atrophy
and improved survival in experimental cancer [8,12]. In addition, the inhibition of myostatin alone or
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myostatin and GDF11 by neutralizing antibodies has attenuated cancer cachexia in vivo and muscle
atrophy in vitro [13]. Further, inhibition of myostatin and/or activins by follistatin induces muscle
hypertrophy in vivo [14]. Follistatin is a circulating endogenous protein that strongly increases muscle
mass and is a natural ACVR2 ligand blocker [14,15]. Myostatin signaling is inhibited when follistatin
binds the C-terminal dimer of the myostatin protein, thus preventing association with ACVR2A/B [15].

Alongside in vivo models, a simpler and more mechanistic in vitro approach is required to study
the effects of ACVR2 ligands on skeletal muscle. Unfortunately, the physiological responses may differ
depending on the cell lines and organisms used, and thus the selection of the cell line should be made
based on the research question [16]. Mouse C2C12 muscle cells are the most commonly used cellular
model to mimic skeletal muscle in vitro. Various studies reporting the effects of myostatin on C2C12
proliferation and differentiation exist [17–21]. Administration of myostatin to C2C12 myoblasts has
been reported to promote canonical and noncanonical signaling pathways [19,21]. Firstly, the canonical
pathway is activated by myostatin binding to ACVR2A/B, which further induces the activation of
activin receptor type 1B (or ALK4) or TGF-β receptor type 1 (or ALK5) to phosphorylate transcription
factor Smad2/3 [22–25]. Secondly, Smad2/3 forms a complex with Smad4, which translocates into the
nucleus to regulate gene expression [22–24]. Furthermore, activation of the Smad2/3 pathway promotes
skeletal muscle catabolism at least via the ubiquitin–proteasome system [8,26,27]. The noncanonical
pathway is responsive to the same TGF-β-related proteins, such as myostatin, that are able to
promote stress and inflammation-responsive mitogen-activated protein kinases (MAPKs), such as p38
MAPK (p38), stress-activated protein kinase/c-Jun N-terminal kinases (SAPK/JNKs), and extracellular
signal-regulated kinases (ERKs) [22], in vitro in C2C12 cells [28–30] and at least ERK in vivo [29,31].
For example, myostatin-induced growth inhibition of the C2C12 myoblasts was associated with
p38 phosphorylation [28], while Zhang et al. reported that myostatin enhanced interleukin-6 (IL-6)
production via the p38 pathway has been associated with proteolysis [32]. The kinases SAPK/JNKs
and ERKs, on the other hand, have been associated with suppression of C2C12 myotube differentiation
after myostatin administration [29,30].

Muscle wasting during cancer increases systemic inflammation [33,34] and inflammatory tumorkines,
such as IL-6, monocyte chemoattractant protein 1 (MCP-1), and regulated on activation, normal T cell
expressed and secreted (RANTES), activate transcriptional factors, such as signal transducer and activator
of transcription 3 (STAT3) and CCAAT-enhancer-binding protein β (C/EBPβ) [34–37]. As a result,
pathways related to muscle atrophy and expression of acute phase response proteins in the inflamed
muscle are activated [34–37]. Indeed, ACVR2 ligands and other tumorkines disrupt normal skeletal
muscle homeostasis during cancer [38]. The effects of tumorkines on intercellular signaling have been
studied by applying cancer cell medium (conditioned medium, CM) to another cell line [39–42]. However,
the Transwell® coculture system [43] is a more suitable approach to study tumorkine effects because
it enables a constant supply of the tumor-derived factors from the upper compartment to another cell
population in the lower compartment. Jackman et al. found that although the concentration of the
tumokine called leukemia inhibitory factor was constantly higher in the colon 26 carcinoma (C26)-CM
than in the lower compartment of the Transwell® system, there was a benefit of the Transwell® model in
that the coculture induced a greater decrease in the C2C12 myotube diameter [41,44].

The aim of this study was to investigate whether an in vitro approach could be utilized as a tool
to examine the direct effects of myostatin on canonical and noncanonical signaling in widely used
murine C2C12 myoblasts and myotubes. To validate the functionality of the recombinant myostatin
protein and to exclude the possibility of cell line-specific responsiveness to myostatin, we repeated the
experiments with human CHQ myoblasts and myotubes derived from quadriceps muscle biopsy [45].
Finally, we cocultured the muscle and cancer cells to examine the effects of tumorkines, including
ACVR2 ligands, on muscle cell homeostasis.
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2. Materials and Methods

2.1. Cell Cultures

Mouse C2C12 myoblasts (American Type Culture Collection, ATCC, Manassas, VA, USA) were
cultured in high glucose containing Dulbecco’s Modified Eagle growth medium (GM) (DMEM,
#BE12-614F, Lonza, Basel, Switzerland) supplemented with 10% (v/v) fetal bovine serum (FBS, #10270,
Gibco, Rockville, MD, USA), 100 U/mL penicillin and 100 µg/mL streptomycin (P/S, #15140, Gibco),
and 2 mM l-glutamine (#17-605E, Lonza). For the experiments, myoblasts were seeded on 12-well or
6-well plates (NunclonTM Delta; Thermo Fisher Scientific, Waltham, MA, USA). When the myoblasts
reached 95–100% confluence, the cells were rinsed with phosphate-buffered saline (PBS) and the GM
was replaced by differentiation medium (DM) containing high glucose DMEM, 5% (v/v) FBS or 2%
(v/v) horse serum (HS, 12449C, Sigma-Aldrich, St. Luis, MO, USA) as indicated, 100 U/mL and 100
µg/mL P/S and 2 mM l-glutamine to promote fusion into myotubes. Fresh DM was changed every
second day. Representative images of the C2C12 myoblasts and myotubes differentiated with 5% FBS
DM are shown in the Supplementary Material Figure S1. Human CHQ cells, derived from quadriceps
muscle biopsy of a 5-day-old infant [45], were donated by Dr. Vincent Mouyly and Dr. Eija Laakkonen.
The immortalization of this cell line does not have effects on myogenic cascades or any other cellular
processes except restraining senescence, which justifies the usage of the commercial immortalized
C2C12 cells and primary nonimmortalized CHQ cells in the present study [46,47]. Furthermore,
the thigh muscles of mice and human from which these cell lines are obtained can be functionally
considered similar and thus comparable [48]. The CHQ cells were cultured in growth medium with 4:1
ratio of GlutaMAX (#61965, Gibco) and Medium 199 (#41150, Gibco) supplemented with 20% (v/v)
FBS (#10270, Gibco) and 50 µg/mL gentamicin (#15750, Gibco). After reaching over 90% confluence,
the differentiation of CHQ myotubes was induced by replacing GM to DM containing 4:1 GlutaMAX
and Medium 199, 50 µg/mL gentamicin, and 10 µg/mL bovine insulin (#15500, Sigma-Aldrich) as
previously described [49]. The CHQ DM was not replaced during the differentiation. All the muscle
cell experiments independent of the cell line used were conducted at day 0–1 (myoblasts in GM) or at
day 5–6 (myotubes in DM) post differentiation. Colon 26 carcinoma (C26) cells were a kind gift from
Dr. Fabio Penna. The C26 cells were grown in the same GM as described for the C2C12 myoblasts.
All the cell experiments were performed in a humidified environment at 37 ◦C and 5% CO2.

2.2. Production and Administration of Myostatin

Recombinant myostatin protein was produced in house as described earlier for its
receptor [50]. Shortly, the myostatin pro-and mature domains were amplified by PCR (prodomain
5′-TGGTCCAGTGGATCTAAATGAG-3′ and 5′-CTTTTTGGTGTGTCTGTTAC-3′, mature domain
5′-GAAGGGATTTTGGTCTTGAC-3′ and 5′-TCATGAGCACCCACAGCG-3′), and the domains were
subcloned into pEFIRES-P vector. Both domains are required for the proper folding of the latent
TGF-β family member precursors [51,52], and we expect myostatin to have similar requirement.
This construct was co-transfected to CHO-S cells, positive cells were selected with puromycin (Thermo
Fisher Scientific), and protein was produced in CD OptiCHO medium (Gibco) supplemented with
2 mM l-glutamine and grown in suspension in an orbital shaker. The protein was purified with
HisTrap excel column (GE Healthcare, Chicago, IL, USA), eluted with imidazole, dialyzed against PBS,
and finally concentrated with an Amicon Ultra concentrator (10,000 MWCO, Millipore, Burlington,
MA, USA). Most of the purified myostatin was confirmed by western blot to be in the mature form
(data not shown). To determine the activity of the myostatin preparation, HepG2 cells (purchased
from ATCC) were cultured in DMEM supplemented with 10% (v/v) fetal calf serum (FCS), 2 mM
l-glutamine, 100 U/mL, and 100 µg/mL P/S, 1× nonessential amino acids (Sigma-Aldrich) and 1 mM
sodium-pyruvate (Sigma-Aldrich) and transfected with CAGA luciferase reporter construct as earlier
with modifications [53]. The cells were stimulated with the ligand for 18 h and luciferase activity was
measured with luciferase assay reagent (Promega, Madison, WI, USA). Dose-dependent activity was
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detected at 10–100 ng/mL and the activity of 10 ng of myostatin was abolished dose-dependently by
addition of two myostatin blockers, soluble ACVR2B and follistatin (6–600 ng/mL) (data not shown).
Prior to the administration to the cells, the inactive promyostatin was heated at 95 ◦C for five minutes to
activate the mature myostatin protein [54]. The activated mature myostatin is highly conserved among
human and mouse (99% identical; one amino acid difference between these species), which justifies the
usage of the same myostatin on mouse C2C12 and human CHQ cell lines [4]. Before the experiments,
the wells were rinsed twice with PBS and fresh medium, depending on the differentiation state GM
or DM with all supplements, was added. The final myostatin concentration used was selected to
be 100 ng/mL based on our dose-dependent bioassay (data not shown) and previous reports [21,32].
The 2-h time-point was selected to show acute changes and the 24-h time-point to show more delayed
or persistent changes based on previous studies [18,21,55]. All myostatin experiments (N = 3) were
independently replicated (total N = 6 per group).

2.3. Transwell® Method, Coculture of C2C12 and C26 Cells

The C2C12 cells were seeded on 12-well or 6-well Transwell®plates (Costar, Corning Incorporated,
Corning, NY, USA) and grown as described above; myoblasts were maintained in GM while myotubes
were differentiated with 5% FBS DM. The C26 cells were grown in C2C12 GM or acclimatized for 48 h
to C2C12 DM prior to the combination of the cell lines as demonstrated previously [41]. The C26 cells
were seeded on the Transwell® inserts with 0.4 µm porous membrane (Costar, Corning Incorporated)
and grown on a separate plate. The C26 inserts were approximately 80–90% confluent when the
myoblasts were 100% confluent and the myotubes were differentiated for five days. On day 0 or 5 post
C2C12 differentiation, the medium of C2C12 and C26 cells was removed, wells and inserts were rinsed
with PBS, and fresh GM or DM was added to both upper and lower compartments. Then, C26 inserts
were placed on C2C12 wells for 24-h coculture with myoblasts or myotubes. The time-point for the
coculture experiment was chosen based on previous studies [41,56]. Coculture experiments (N = 3–4)
were independently replicated once (total N = 6–8 per group).

2.4. SUnSET Method for the Analysis of Protein Synthesis, Protein Extraction, and Western Blotting

To measure the level of protein synthesis from C2C12 cells during coculture with C26 cells,
the surface sensing of translation (SUnSET) method was used as demonstrated previously [28]. Briefly,
puromycin was added to a final concentration of 1 µM as previously reported by us [29]. From this step
forward, protein extraction was performed to all samples as follows. After the treatments, the cells
were rinsed twice with cold PBS and lysed and scraped on ice in a buffer containing 20 mM HEPES
(pH 7.4), 1 mM EDTA, 5 mM EGTA, 10 mM MgCl2, 100 mM β-glycerophosphate, 1 mM Na3VO4,
1 mM DTT, 1% TritonX-100 and supplemented with protease and phosphatase inhibitors (#1861280,
Thermo Fisher Scientific). After 30 min, the homogenate was centrifuged for 5 min, 500× g at +4 ◦C.
Bicinchoninic Acid (BCA) Protein Assay Kit (Pierce Biotechnology, Rockford, IL, USA) was used
according to manufacturers’ protocol to measure the total protein content with an automated KoneLab
analyzer (Thermo Fisher Scientific, Vantaa, Finland). Western blot analysis was conducted as previously
described [57]. In brief, ~7 or 10 µg of protein (CHQ and C2C12, respectively) were separated by
SDS-PAGE, transferred to PVDF membranes, blocked and incubated overnight with primary antibodies
at 4 ◦C. Proteins were visualized by enhanced chemiluminescence (SuperSignal west femto maximum
sensitivity substrate; Pierce Biotechnology) using a ChemiDoc MP device (Bio-Rad Laboratories,
Hercules, CA, USA) and quantified with Image Lab software (version 6.0; Bio-Rad Laboratories).
When stain free protein synthesis (puromycin-incorporated proteins) and ubiquitinated proteins were
analyzed, the whole lane intensity was quantified. Stain free was used as a loading control and the
results were normalized by dividing the intensity of the analyzed band by the intensity of the whole
stain free lane. When two bands of one protein were detected, the bands were quantified together.
Antibodies used in this study are presented in the Supplementary Material (Table S1).
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2.5. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR

To extract total RNA, the cells were rinsed twice with cold PBS and lysed with TRIreagent solution
according to the manufacturer´s protocol (AM9738, Thermo Fisher Scientific). The synthesis of cDNA
and quantitative real-time PCR (RT-qPCR) were performed as previously described [57]. The sequences
of the primers used in the study are presented in Supplementary Material (Table S2). Amplicon
lengths of the amplifications using self-designed primers not published previously were analyzed and
the lengths were as expected (Supplementary Material Figure S2). Detector of all double stranded
DNA, PicoGreen (Quant-iT™ PicoGreen™ dsDNA Assay Kit, Thermo Fisher Scientific), was used
to normalize the RT-qPCR results of both cell lines according to manufacturer´s protocol because no
stable housekeeping gene was detected. For the analysis of the RT-qPCR results, 2−Ct values were
normalized to the PicoGreen content. The PicoGreen standard curves of both cell lines are presented in
Supplementary Material Figure S3. N = 3–5 per group.

2.6. Multiplex Cytokine Assay

The conditioned medium of the C26 cells (C26-CM) for multiplex cytokine assay (Q-Plex Array
16-plex ELISA, Quansys Biosciences, Logan, UT, USA) was collected as previously described [42].
Shortly, 25 µL of undiluted, overnight serum-starved C26-CM was centrifuged and passed through a
0.22 µm filter. The cytokine assay was performed according to the manufacturer’s protocol. The lower
limit of detection for MCP-1 was 3.40 pg/mL and 2.15 pg/mL for RANTES. The calibrator range of the
assay for both was 4.12–3000 pg/mL.

2.7. Statistical Analyses

The data were tested for normality (Shapiro–Wilk test) and equality of variances (Levene´s test)
using IBM SPSS Statistics version 24 for Windows (IBM SPSS Statistics, Chicago, IL, USA). For statistical
evaluation, a two tailed paired or unpaired Student´s t-test or Mann Whitney U-test (IBM SPSS
Statistics) were used when appropriate. The results are presented as means ± SEM. The level of
significance was set at p < 0.05. Pooling of the follistatin protein content results was justified because
myostatin administration had no effect on the protein in question.

3. Results

3.1. Myostatin Had a Larger Effect on the Canonical, Noncanonical, and Inflammatory Signaling in C2C12
Myoblasts than in Myotubes

The C2C12 myoblasts differentiated into myotubes very successfully within five days as only a few
cells remained as myoblasts at this time-point (Supplementary Material Figure S1). The administration
of myostatin increased the phosphorylation of Smad3Ser423/Ser425 after 2, but not after 24 h in C2C12
myoblasts (p < 0.001, Figure 1a,f), and this response was substantially lower in myotubes (p < 0.01,
Figure 1a,f). On the noncanonical pathway, the 2-h myostatin administration induced phosphorylation
of all MAPKs, p38Thr180/Tyr182, SAPK/JNK1/2Thr183/Tyr185, and ERK1/2Thr202/Tyr204 in myoblasts (p < 0.01,
p < 0.01, and p < 0.05, respectively, Figure 1b–d,f,g), but again, in myotubes this response was very
small or lost completely (Figure 1b–d,f,g). The comparison of nontreated C2C12 myotubes to myoblasts
showed a nonuniform effect of differentiation into myotubes on canonical and noncanonical signaling
(Figure 1e–g). To exclude the effect of the C2C12 myotube differentiation protocol, we repeated
the experiment by using another differentiation method (2% HS), demonstrating that the decreased
responsiveness of the C2C12 cells to myostatin after differentiation is independent of the differentiation
protocol (Supplementary Material Figure S4).
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= P < 0.05, P < 0.01, and P < 0.001, respectively. CTRL (-) = control group, MSTN (+) = myostatin group. 

The 2 h myostatin administration promoted typical inflammatory pathways in the C2C12 cells, 
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P < 0.01, respectively, Figure 2a,d) and phosphorylated C/EBPβThr235 in the myoblasts (P < 0.01, Figure 

Figure 1. Myostatin-induced changes in the canonical (Smad3) and noncanonical (MAPKs) pathways
were greater in C2C12 myoblasts than they were in myotubes. (a) Phosphorylated Smad3Ser423/425

and total Smad3 in myoblasts and myotubes. (b) Phosphorylated p38Thr180/Tyr182 and total p38 in
myoblasts and myotubes. (c) Phosphorylated SAPK/JNK1/2Thr183/Tyr185 and total SAPK/JNK1/2 in
myoblast and myotubes. (d) Phosphorylated ERK1/2Thr202/Tyr204 and total ERK1/2 in myoblasts and
myotubes. In the figures, the values are presented as normalized to CTRL = 1. (e) Nontreated CTRL
myoblasts and myotubes of the 2-h and 24-h time-points were pooled and the values are presented as
normalized to myoblasts = 1. (f,g) Representative blots. In A–D, N = 6 per group. In E, N = 12 per
group. *, **, and *** = p < 0.05, p < 0.01, and p < 0.001, respectively. CTRL (-) = control group, MSTN
(+) = myostatin group.
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The 2 h myostatin administration promoted typical inflammatory pathways in the C2C12 cells, shown
by the elevated phosphorylation of STAT3Tyr705 in both myoblasts and myotubes (p < 0.001 and p < 0.01,
respectively, Figure 2a,d) and phosphorylated C/EBPβThr235 in the myoblasts (p < 0.01, Figure 2b,d). When
comparing the nontreated C2C12 myotubes to myoblasts, the contents of phosphorylated STAT3Tyr705

and total STAT3 were higher in myotubes when compared to myoblasts, whereas the opposite was true
regarding the phosphorylated C/EBPβThr235 and total C/EBPβ (Figure 2c,d).
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Figure 2. Myostatin administration on C2C12 cells increased inflammatory signaling in C2C12
myoblasts, whereas in myotubes the effect was very small. (a) Phosphorylated STAT3Tyr705 and total
STAT3 in myoblasts and myotubes. (b) Phosphorylated C/EBPβThr235 and total C/EBPβ in myoblasts
and myotubes. In the figures, the values are presented as normalized to CTRL = 1. (c) Nontreated CTRL
myoblasts and myotubes of the 2-h and 24-h time-points were pooled, and the values are presented as
normalized to myoblasts = 1. (d) Representative blots. In A–B, N = 6 per group. In C, N = 12 per group.
*, **, and *** = p < 0.05, p < 0.01, and p < 0.001, respectively. CTRL (-) = control group, MSTN (+) =

myostatin group.
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3.2. The Coculture with C26 Cells Had Minor Effects on Canonical and Noncanonical Signaling in C2C12
Cells, but Increased Inflammatory Signaling Similar to the Effect of Myostatin

We previously reported that the C26 tumors express ACVR2 ligands, such as myostatin [12],
and the same cell line is used in the present study. We analyzed inflammatory cytokines from
the C26-CM using multiplex ELISA and found one highly (>1000 pg/mL) secreted inflammatory
cytokine, MCP-1 (>3500 pg/mL), and one moderately (>100 pg/mL) secreted mediator, RANTES
(>430 pg/mL), as shown by others [58]. MCP-1 and RANTES were also elevated in vivo in C26
tumor-bearing mice as we previously reported [12]. To analyze whether C26-derived tumorkines
would also have more robust effects on myoblasts than they did on myotubes, we cocultured C2C12
cells in the Transwell® system with C26 cancer cells for 24 h. Interestingly, rather than activating
canonical and noncanonical pathways like myostatin administration, the 24-h coculture decreased the
phosphorylation of Smad3Ser423/Ser425 in both myoblasts and myotubes (p < 0.05, Figure 3a,d), while the
phosphorylation of p38Thr180/Tyr182 remained unaltered in myoblasts and decreased in myotubes
(p < 0.05, Figure 3b,e). Furthermore, after the 24-h coculture, no changes were observed in protein
synthesis or in ubiquitinated proteins in C2C12 cells (Supplementary Material Figure S5). Additionally,
the downstream mediators of the mechanistic target of rapamycin (mTOR) complex 1, phosphorylated
S6K1/2Thr389 and ribosomal protein S6Ser240/Ser244, remained also unaltered (Supplementary Material
Figure S5). The phosphorylation of AktSer473 downstream to mTOR complex 2 [59] tended to decrease
in myoblasts when cocultured with C26 cells (p = 0.067, Figure 3c–e).
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Figure 3. The 24-h coculture of C2C12 myoblasts (MB) and myotubes (MT) with C26 cells suppressed
canonical and noncanonical signaling independent of the differentiation stage. (a) Phosphorylated
Smad3Ser423/425 and total Smad3. (b) Phosphorylated p38Thr180/Tyr182 and total p38. (c) Phosphorylated
AktSer473 and total Akt. In the figures, MB or MT with empty insert (-) are set as one and compared with
MB or MT with C26 cells on the insert ((+), MB+C26 and MT+C26, respectively). (d,e) Representative
blots. N = 6–8 per group. * = p < 0.05.

Similar to myostatin administration, the phosphorylation of STAT3Tyr705 and C/EBPβThr235

increased in both myoblasts (p < 0.001 and p < 0.05, respectively, Figure 4a–c) and myotubes (p < 0.01,
Figure 4a–c) after the 24-h coculture with C26 cells.

Biomolecules 2020, 10, x 10 of 24 

 

(e) 

Figure 3. The 24-h coculture of C2C12 myoblasts (MB) and myotubes (MT) with C26 cells suppressed 

canonical and noncanonical signaling independent of the differentiation stage. (a) Phosphorylated 

Smad3Ser423/425 and total Smad3. (b) Phosphorylated p38Thr180/Tyr182 and total p38. (c) Phosphorylated 

AktSer473 and total Akt. In the figures, MB or MT with empty insert (-) are set as one and compared 

with MB or MT with C26 cells on the insert ((+), MB+C26 and MT+C26, respectively). (d,e) 

Representative blots. N = 6–8 per group. * = P < 0.05. 

Similar to myostatin administration, the phosphorylation of STAT3Tyr705 and C/EBPβThr235 

increased in both myoblasts (P < 0.001 and P < 0.05, respectively, Figure 4a–c) and myotubes (P < 0.01, 

Figure 4a–c) after the 24-h coculture with C26 cells. 

 

(a) (b) 

 

(c) 

Figure 4. The 24-h coculture of C2C12 myoblasts (MB) and myotubes (MT) with C26 cells promotes 

inflammatory response independent of the differentiation stage. (a) Phosphorylated STAT3Tyr705and 

total STAT3. (b) Phosphorylated C/EBPβThr235 and total C/EBPβ. (c) Representative blots. In the 

figures, MB or MT with empty insert (-) are set as one and compared with MB or MT with C26 cells 

on the insert ((+), MB+C26 and MT+C26, respectively). N = 6–8 per group. *, **, and *** = P < 0.05, P < 

0.01, and P < 0.01, respectively. 

Figure 4. The 24-h coculture of C2C12 myoblasts (MB) and myotubes (MT) with C26 cells promotes
inflammatory response independent of the differentiation stage. (a) Phosphorylated STAT3Tyr705 and
total STAT3. (b) Phosphorylated C/EBPβThr235 and total C/EBPβ. (c) Representative blots. In the
figures, MB or MT with empty insert (-) are set as one and compared with MB or MT with C26 cells
on the insert ((+), MB+C26 and MT+C26, respectively). N = 6–8 per group. *, **, and *** = p < 0.05,
p < 0.01, and p < 0.01, respectively.
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3.3. Lower Myostatin Responsiveness in C2C12 Myotubes Was Associated with Altered Gene Expression of
Myostatin Regulators

The distinct response of the C2C12 myoblasts and myotubes to myostatin suggested that the
differentiation might have affected the regulation of the myostatin signaling pathway. Therefore, we
analyzed the transcriptional level of the TGF-β family members and their blocker, follistatin [15],
from myoblasts and myotubes. Compared to myoblasts, follistatin mRNA was increased by 20-fold
(Follistatin, p < 0.05, Figure 5a) in myotubes with no changes in ACVR2B mRNA (Acvr2b, Figure 5b).
Similar to follistatin, an increase in the mRNA of endogenous GDF11 (Gdf11, p < 0.001, Figure 5c),
activin A (InhibinβA, p < 0.001, Figure 5d) and myostatin (Gdf8, p < 0.001, Figure 5e) were observed.
The differentiation protocol again did not influence the results (Supplementary Material Figure S6
and Figure 5), with the exception of the unaltered myostatin level after 2% HS differentiation protocol
(Supplementary Material Figure S6).
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Figure 5. Differentiation of the C2C12 cells increased the mRNA level of (a) follistatin, while (b)
ACVR2B remained unaltered. Of the ACVR2 ligands, (c) GDF11, (d) activin A, and (e) myostatin
mRNAs were increased in myotubes in comparison to myoblasts. In the figures, the values are presented
as normalized to myoblasts = 1. N = 3 per group. *, *** = p < 0.05 and p < 0.001, respectively.
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Next, to validate the obtained follistatin mRNA result, we analyzed the protein content of follistatin
from C2C12 cells. In agreement with the transcriptional level, follistatin protein content was increased
by 2-fold in myotubes in comparison with myoblasts (p < 0.001, Figure 6a,b). Myostatin administration
had no effect on the follistatin protein content (Figure 6a,b). Again, the effect was independent of the
differentiation method (Supplementary Material Figure S7).
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3.4. Human Skeletal Myotubes Are Responsive to Myostatin

We replicated the myostatin experiment using human CHQ myoblasts and myotubes to analyze
whether the reduced responsiveness of the canonical and noncanonical signaling pathways to myostatin
was cell-line-specific. Independent of the differentiation stage, myostatin administration to human
CHQ cells increased canonical and noncanonical signaling (Figure 7a–d,f–h). In contrast to C2C12 cells
with a strong and fast response in inflammatory signaling (Figure 2a,b,d), myostatin administration to
CHQ cells resulted in only a minor increase in the phosphorylated STAT3Tyr705 in myoblasts occurring
after 24 h (Figure 8a,b,d). The differentiation process of CHQ myoblasts into myotubes (Figure 7e–h)
was affected in a different manner than what was shown earlier in C2C12 cells (Figure 1e–g). More
specifically, in C2C12 myotubes phosphorylated p38 was increased, while other phosphorylated MAPKs
were decreased (Figure 1e–g), and both phosphorylated and total C/EBPβ were strongly diminished
(Figure 2c,d). In contrast, in CHQ myotubes, phosphorylated p38 was decreased and most of the
other phosphorylated or total MAPKs were increased (Figure 7e–h), while phosphorylated C/EBPβ
was unaffected by the differentiation and total C/EBPβ was increased (Figure 8c,d). Phosphorylated
STAT3 increased after differentiation (Figure 2c,d and Figure 8c,d), while Smad3 was nonresponsive to
differentiation in both cell lines (Figures 1e–g and 7e–h).
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Figure 7. Myostatin-induced changes in the canonical (Smad3) and noncanonical (MAPKs) pathways
were similar in CHQ myoblasts and myotubes. (a) Phosphorylated Smad3Ser423/425 and total Smad3 in
myoblasts and myotubes. (b) Phosphorylated p38Thr180/Tyr182 and total p38 in myoblasts and myotubes.
(c) Phosphorylated SAPK/JNK1/2Thr183/Tyr185 and total SAPK/JNK1/2 in myoblasts and myotubes.
(d) Phosphorylated ERK1/2Thr202/Tyr204 and total ERK1/2 in myoblasts and myotubes. In the figures,
the values are presented as normalized to CTRL = 1. (e) Nontreated CTRL myoblasts and myotubes of
the 2-h and 24-h time-points were pooled and the values are presented as normalized to myoblasts = 1.
(f–h) Representative blots. N = 6 per group. *, **, and *** = p < 0.05, p < 0.01, and p > 0.001, respectively.
CTRL (-) = control group, MSTN (+) = myostatin group.
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Figure 8. Myostatin administration had a minor impact on inflammatory signaling in CHQ cells.
(a) Phosphorylated STAT3Tyr705 and total STAT3 in myoblasts and myotubes. (b) Phosphorylated
C/EBPβThr235 and total C/EBPβ in myoblasts and myotubes. In the figures, the values are presented as
normalized to CTRL = 1. (c) Nontreated CTRL myoblasts and myotubes of the 2-h and 24-h time-points
were pooled and the values are presented as normalized to myoblasts = 1. (d) Representative blots.
In A–B, N = 6 per group. In C, N = 12 per group. ** and *** = p < 0.01 and p < 0.001, respectively. CTRL
(-) = control group, MSTN (+) = myostatin group.
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In contrast to C2C12 myotubes, the differentiation of CHQ myotubes had a smaller effect on
the ACVR2 ligands and follistatin. The mRNA of follistatin (FOLLISTATIN), ACVR2B (ACVR2B),
and GDF11 (GDF11) remained unaltered in CHQ myoblasts and myotubes, while activin A (INHIBINβA,
p < 0.01) and myostatin (GDF8, p = 0.073) decreased (Figure 9a–e). Unlike in C2C12 cells, follistatin
protein content remained unaltered among CHQ differentiation stages but was similarly unaffected by
myostatin administration (Figure 9f,g). These results highlight the differences between C2C12 and
CHQ skeletal muscle cells and their distinct ability to regulate endogenous ACVR2 ligands and their
blocker, follistatin.
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Figure 9. Differentiation of the CHQ cells did not alter the mRNA level of (a) follistatin, (b) ACVR2B
and (c) GDF11. Of the ACVR2 ligands, the mRNA of (d) activin A and (e) myostatin were decreased in
CHQ myotubes in comparison to myoblasts. (f) Differentiation of CHQ myoblasts into myotubes had
no effect on follistatin protein content. (g) Representative blot. In the figures, the values are presented
as normalized to myoblasts = 1. In A–E, N = 4–5 per group. In F, N = 12 per group as control (-) and
myostatin (+) samples were pooled due to the lack of myostatin effect. ** = p < 0.01.

4. Discussion

In this study, we report that differentiation of C2C12 myoblasts into myotubes strongly reduced
the effects of myostatin on canonical (Smad3) and noncanonical (MAPKs) signaling. Similarly,
myostatin-induced phosphorylation of the inflammatory signaling proteins was greater in myoblasts
than in myotubes. The inflammatory pathways, however, were similarly promoted in myoblasts and
myotubes after coculture of the C2C12 cells with C26 cancer cells. This suggests that the general
responsiveness to inflammation-regulating tumorkines is not reduced after differentiation. The reduced
effects of myostatin in C2C12 myotubes was accompanied by enhanced expression of follistatin,
an inhibitor of the TGF-β family members, and increased mRNA expression of ACVR2 ligands in
C2C12 myotubes in comparison to myoblasts. Unlike in murine C2C12 cells, myostatin-induced
changes in human CHQ skeletal muscle cells were mostly independent of the differentiation stage.
Moreover, unlike in C2C12 cells, no changes in follistatin expression were observed while the mRNA
expression of some ACVR2 ligands was even decreased in myotubes when compared to myoblasts.
The reason for the lower responsiveness of the C2C12 myotubes to ACVR2 ligand myostatin may be
related to the elevated follistatin content in comparison to myoblasts, because follistatin is a very strong
blocker of myostatin [15]. In line with our findings, a microarray demonstrated a 50-fold increase
in follistatin mRNA in C2C12 myotubes in comparison to myoblasts [60]. Rossi et al. reported that
follistatin mRNA increased during differentiation in C2C12 cells, while ACVR2B mRNA expression
remained unaltered [61]. Higher follistatin content in myotubes may be explained by the fact that
follistatin has an important role in the myogenic differentiation and force generation for contractions
in C2C12 myotubes [62]. These studies highlight the vital role of follistatin in the functionality and
contractility of the C2C12 cells, which are more relevant in the myotubes than in the myoblasts.

Another possible explanation for the reduced responsiveness to myostatin in C2C12 myotubes
may be the simultaneous increase in the mRNA expression of myostatin, GDF11, and activin A.
Furthermore, others have previously shown that myostatin mRNA increased during C2C12 myoblast
differentiation [61,63,64], and suggested that endogenous myostatin has a paracrine function as a
regulator of myoblast proliferation and cell survival [63]. Similarly, activin A, another regulator of
myogenesis, has also been related to the inhibition of proliferation and differentiation [23]. In the present
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study, we further expand these results by showing that GDF11 mRNA increased in differentiated
C2C12 myotubes. Unlike in murine cells, the differentiation of the human CHQ muscle cells did
not elevate the gene expression or the protein content of follistatin or mRNA expression of ACVR2
ligands. Therefore, we speculate that this difference in ACVR2 ligands and their regulator, follistatin,
between these cell models may explain different responses to myostatin. The metabolic differences
of mouse C2C12, rat L6 and human skeletal muscle cell lines have been shown, and thus cell-line
selection should be made based on the research question [16]. Similarly, our results suggest that
C2C12 myotubes may not be the most suitable in vitro model to investigate the effects of myostatin on
canonical and noncanonical signaling in skeletal muscle. However, the detailed mechanisms for the
reduced myostatin response in C2C12 myotubes require further examination.

Canonical Smad signaling is a key pathway of TGF-β signaling [65]. In vivo studies have
shown that myostatin induces muscle atrophy via Smad3 [66–68]. In line with our in vitro findings,
Yuzawa et al. reported a greater increase in the phosphorylation of Smads after shorter (30 min) than
longer (6–12 h) treatment with 300 ng/mL of myostatin in C2C12 cells [69]. Our results show that
canonical signaling was increased in the C2C12 myoblasts, while this response was blunted in the
myotubes. The noncanonical signaling pathway (MAPKs) has also been shown to play a role in muscle
atrophy induced by the ACVR2 ligands [24,70]. We observed that myostatin administration increased
the phosphorylation of all studied MAPKs in C2C12 myoblasts, while only p38 phosphorylation
increased in myotubes. Therefore, similar to the canonical pathway, C2C12 myotubes lost most of
their noncanonical responsiveness to myostatin during differentiation. It is possible in the C2C12
cell line that the presence of some myoblasts in the myotube culture could at least partly explain
the minor remaining responsiveness to myostatin in the latter (Supplementary Material Figure S1).
Our in vitro results are comparable to in vivo situation because the noncanonical signaling pathway
is also responsive to myostatin in muscles in vivo. For instance, an increase in the phosphorylation
of ERK1/2 in myostatin-administered mice has been reported [29], while blocking of the endogenous
myostatin and activins decreased MAPK-signaling in murine muscle [50]. In contrast to our murine
in vitro results, but in agreement with previous studies conducted using commercial human muscle cell
lines [28,67], we observed that administration of myostatin enhanced both canonical and noncanonical
signaling pathways in human CHQ myoblasts and myotubes. Interestingly, another difference between
these cell lines was that differentiation of the C2C12 and CHQ myoblasts into myotubes resulted in
opposite effects on MAPK-signaling, while Smad3-signaling remained unaffected after differentiation
in both cell lines. However, myostatin had only a minor effect on inflammatory pathways in CHQ cells
in contrast to C2C12 cells when both cell lines responded to differentiation by increased STAT-signaling
and phosphorylated C/EBPβ decreased strongly only in C2C12 cells. Moreover, the effect of myostatin
on inflammatory signaling was small in CHQ cells in contrast to C2C12 cells. The results suggest that
the effects of myostatin may be more prominent in cell lines other than murine C2C12, and this should
be taken into consideration when choosing an in vitro model for muscle research. However, in the
future, time-series of the effects of myostatin on canonical and noncanonical signaling in the skeletal
muscle cells should be conducted.

In recent years, a better understanding of the tissue crosstalk in diseases causing muscle atrophy,
such as cancer-associated cachexia, has become important [71]. Cancers can be accompanied by
tumorkine-induced inflammation [72]. Similarly, we observed in vitro that both the myostatin
administration and the cancer cell coculture stimulated inflammatory pathways in C2C12 myoblasts and
myotubes by increasing the phosphorylation of STAT3 and C/EBPβ, markers of increased inflammatory
response [35]. However, although STAT3 has been reported to promote catabolic processes in the muscle
during inflammation-induced cachexia [34], in C2C12 cells, STAT3 has been shown to regulate both
proliferation and differentiation [73,74] and indeed p-STAT3 and STAT3 were elevated in myotubes when
compared to myoblasts in the present study. This highlights the complexity of the interpretation of STAT3
signaling in different physiological conditions. Similarly to our study, Ding et al. reported that myostatin
administration increased the phosphorylation of C/EBPβ in C2C12 myotubes [55], and they further
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linked p38β-regulated C/EBPβ to catabolic processes [75]. However, the present study suggests that
the C26 cell-derived tumorkines promote inflammation rather than antianabolic or catabolic signaling
because no changes were observed in protein synthesis, ubiquitinated proteins, or in mTOR signaling.
Similarly to STAT3, C/EBPβ may have a role in the regulation of C2C12 myoblast differentiation.
Mancini et al. demonstrated that C2C12 myoblasts contained detectable levels of C/EBPβ in the early
phase of differentiation into adipocytes, while C/EBPβ was not observed during differentiation into
myotubes [76]. This suggests that C/EBPβ may regulate the selection of the differentiation pathway in
C2C12 cells, which could explain why C/EBPβ was barely detected in myotubes in the present study.
To summarize, our results indicate that the C26 cell-derived tumorkines, although they have been shown
to decrease myotube size after 24-h coculture [41], seemed to have only minor effects on antianabolic and
catabolic signaling at this time-point. Furthermore, time-series experiments on the tumorkine secretion
kinetics during coculture in various muscle cell lines should be conducted in the future.

5. Conclusions

In this study, we investigated whether an in vitro muscle cell approach could be utilized as a
tool to study the direct effects of myostatin and tumorkines on myoblasts and myotubes. The results
demonstrate that the canonical and noncanonical responses to myostatin were dependent on the
differentiation stage of the C2C12 cells as well as on the signaling pathway studied. The reduced
myostatin responsiveness of the C2C12 myotubes could possibly be due to the endogenous regulation
of the TGF-β family members and their regulators during differentiation. Importantly, the results
demonstrate that the decreased effects of myostatin on canonical and noncanonical signaling were not
a universal phenomenon in cell models, because the human muscle cells restrained the responsiveness
to myostatin. Therefore, according to our results, C2C12 myotubes are not a recommended cell line to
study the effects of myostatin and possibly other ACVR2 ligands.
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ACVR2 Activin receptor type 2
ACVR2B Activin receptor type 2B
ALK4 or 5 Activin receptor-like kinase 4 or 5
BCA Bicinchoninic Acid
C26-CM Colon 26 carcinoma cell conditioned medium
C/EBPβ CCAAT-enhancer-binding protein β

DM Differentiation medium
DMEM Dulbecco´s modified Eagle´s medium
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ERK1/2 Extracellular signal-regulated kinase 1/2
FBS Fetal bovine serum
GDF Growth differentiation factor
GM Growth medium
HS Horse serum
IL-6 Interleukin-6
MAPK(s) Mitogen-activated protein kinase(s)
MCP-1 Monocyte chemoattractant protein-1 or CCL2
PBS Phosphate buffered saline
P/S Penicillin-streptomycin
RANTES Regulated on activation, normal T cell expressed and secreted or CCL5
SAPK/JNK1/2 Stress-activated protein kinase/c-Jun N-terminal kinase 1/2
STAT3 Signal transducer and activator of transcription 3
Smad3 Small mothers against decapentaplegic 3
TGF-β Transforming growth factor-β
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